Ms. Rania Hamdani | Computer Science and Artificial Intelligence | Best Researcher Award
AE3S at University of luxembourg, Luxembourgย
Rania Hamdani is a dynamic early-career research scientist specializing in software engineering, data management, and cloud architecture for Industry 5.0 applications. Currently based at the University of Luxembourg, she is engaged in advanced research on integrating heterogeneous data sources and optimizing decision-making in cloud-based systems. With a strong foundation in software development and operational research, Rania has already co-authored three research papers in Cloud-Edge AI and ontology-driven knowledge management. Her diverse technical skills span Python, Java, Docker, Kubernetes, and Azure DevOps, and she has gained international experience through roles in Luxembourg, Canada, France, and Tunisia. Passionate about both academic and applied innovation, she has contributed to multiple interdisciplinary projects in AI, human-computer interaction, and intelligent systems. Rania is also active in professional communities such as IEEE and youth science associations, reflecting her commitment to collaborative growth and scientific outreach.
Professional Profileย
๐ Education Background
Rania Hamdani has a strong academic foundation rooted in engineering and scientific rigor. She earned her Engineering Degree in Software Engineering from the National Higher School of Engineers of Tunis (ENSIT) between 2021 and 2024, where she specialized in Advanced Design, Service-Oriented Architecture, Object-Oriented Programming, Database Management, and Operational Research. Prior to that, she completed a Preparatory Cycle for Engineering Studies at the Preparatory Institute for Engineering Studies of Tunis (2019โ2021), focusing intensively on mathematics, physics, and core technology subjectsโa rigorous program designed to prepare students for elite engineering schools. Rania also holds a Baccalaureate in Mathematics from Pioneer High School Bourguiba Tunis, where she graduated with distinction (Very Good) in 2019. This academic journey has laid a solid foundation for her multidisciplinary research and professional growth in software and data sciences.
๐ผ Professional Experienceย
Rania Hamdani has developed a rich and diverse professional portfolio across academia and industry, with hands-on experience in software engineering, research, and cloud-based technologies. She is currently a Research Scientist at the University of Luxembourg (since November 2024), where she focuses on optimizing decision-making processes in cloud environments through advanced data integration techniques. Prior to this, she served as a Research Intern at the same institution (May to October 2024), contributing to projects in Ontology-Driven Knowledge Management and Cloud-Edge AI, resulting in three published papers. Alongside her academic work, Rania worked as a Part-Time Software Engineer at CareerBoosts in Canada (2021โ2025), where she honed her skills in DevOps, data analysis, test automation, and backend development using tools like Python, Docker, and Kubernetes. Her earlier internships include roles at Qodexia (France), Sagemcom (Tunisia), and Tunisie Telecom, where she worked on smart recruitment platforms, employee management systems, and server monitoring tools using full-stack technologies such as SpringBoot, Angular, and PostgreSQL. This blend of research and industry experience positions Rania as a versatile and forward-thinking technology professional.
๐ฌ Research Interests of Rania Hamdani
Rania Hamdaniโs research interests lie at the intersection of software engineering, operational research, data integration, and cloud-edge intelligence, with a strong orientation toward Industry 5.0 applications. She is particularly passionate about developing intelligent systems that enhance decision-making in cloud-based and distributed environments, leveraging AI, machine learning, and ontology-driven knowledge frameworks. Her work focuses on enabling seamless management of heterogeneous data sources, scalable architectures, and adaptive human-computer interaction (HCI) systems. Rania is also deeply engaged in exploring Cloud-Edge AI ecosystems, recommender systems, and automation pipelines using modern tools like Docker, Kubernetes, TensorFlow, and Neo4j. Her multidisciplinary approach reflects a vision for integrating research-driven insights with real-world industrial challenges, making her contributions both academically valuable and practically impactful.
๐ Awards and Honors of Rania Hamdani
While still in the early stages of her research career, Rania Hamdani has demonstrated exceptional academic and technical promise. She graduated with a โVery Goodโ distinction in her Baccalaureate in Mathematics from the prestigious Pioneer High School Bourguiba in Tunis, reflecting her consistent academic excellence. Rania has also earned multiple professional certifications from Microsoft, including Azure Fundamentals, Azure Data Fundamentals, Azure AI Fundamentals, and Azure Security, Compliance, and Identity Fundamentals, showcasing her dedication to staying at the forefront of cloud and AI technologies. Though formal research awards or honors are not yet listed, her early publications, research contributions, and international internships highlight a trajectory poised for future recognition in both academic and industry spheres.
Publications Top Noted
Title: Adaptive humanโcomputer interaction for Industryโฏ5.0: A novel concept, with comprehensive review and empirical validation
Authors: RaniaโฏHamdani, InรจsโฏChihi
Year: 2025
Journal: Computers in Industry (Volumeโฏ168)
DOI: 10.1016/j.compind.2025.104268
๐งพ Conclusion
Rania Hamdani is highly suitable for the Best Emerging Researcher or Young Researcher Award category. She has excellent technical skills, promising early-stage research output, international exposure, and a forward-looking vision in areas like Industry 5.0, cloud-edge intelligence, and AI-based decision systems. While still building her publication track record and academic leadership, her current trajectory shows strong promise for future impactful contributions to scientific and industrial domains.