Badr Machkour | Artificial Intelligence | Best Researcher Award

Dr. Badr Machkour | Artificial Intelligence | Best Researcher Award

Professor, Faculty of Legal, Economic and Social Sciences, Morocco 

Dr. Badr Machkour is a Moroccan researcher and academic with deep expertise in economics, finance, and digital transformation. Currently holding a Ph.D. in Economic and Management Sciences, he has contributed to multiple domains including Industry 4.0, financial digitalization, and educational innovation. With a robust blend of academic and consulting experience, Dr. Machkour bridges theory and practice to drive impactful research. 🌐📊

Profile

Scopus

Google Scholar

Orcid

🎓 Education

Dr. Machkour holds a Doctorate in Economic and Management Sciences (2018–2023) from the FSJES of Agadir. His academic foundation includes a degree in Audit and Management Control from ENCG Agadir (2014–2017), post-preparatory classes in Economics and Commerce (2012–2014), and a Mathematics Baccalaureate (2011–2012). His diverse training forms a strong base for multidisciplinary research. 📚🧠

💼 Professional Experience

Dr. Machkour has extensive experience as a financial auditor, consultant, and trainer. He currently serves as a trainer at the Cité des Métiers et des Compétences (OFPPT), delivering finance and management programs. His previous roles span auditing and consulting at prominent firms like Augeco, MAZARS Maroc, and Agadir Conseil, involving sectors from agriculture to banking. 🏢💼📈

🔬 Research Interests

His research explores the intersection of Industry 4.0, digital banking solutions, customer experience, AI in education, and entrepreneurship. Dr. Machkour is particularly interested in how technology transforms economic relationships, pedagogical structures, and corporate strategies. 🤖📱🏫

🏆 Awards & Honors

While specific awards are not listed, Dr. Machkour’s work has been featured in indexed journals and cited internationally — notably his highly cited paper on Industry 4.0’s implications in finance. His academic contributions reflect both quality and influence. 🥇🌍

📑 Publications

Industry 4.0 and its Implications for the Financial Sector, Procedia Computer Science, 2020 — Cited by 151 🏦

The Rise of Artificial Intelligence in Educational Management: A Prospective Analysis on the Role of the Virtual Educational Director, Procedia Computer Science, 2025 🧠

Internet of Things in Education: Transforming Learning Environments, Enhancing Pedagogy, and Optimizing Resource Management, Data and Metadata, 2024 🏫

L’impact de l’adoption des solutions digitales sur la relation banque-client, Revue Française d’Economie et de Gestion, 2024 — Cited by 2 📲

Les facteurs d’adoption des solutions digitales bancaires par les consommateurs marocains, IJAFAME, 2022 — Cited by 1 📱

The Uses of Connected Objects and Their Influence on the Customer Experience, Test Engineering and Management, 2020 — Cited by 1 🌐

Etude exploratoire du développement de l’esprit Entrepreneurial et des compétences Entrepreneuriales auprès des étudiants au Maroc, Alternatives Managériales Economiques, 2024 👨‍🎓

Entrepreneurship 4.0 and Success Factors in the Context of Industry 4.0: A literature review, African Scientific Journal, 2024 🚀

✅ Conclusion

Overall, Dr. Badr Machkour is a promising and accomplished researcher whose work bridges digital innovation and economic practice with scholarly insight. His growing citation record, topical relevance, and interdisciplinary reach make him a strong candidate for the Best Researcher Award. With continued international engagement and broader collaborative networks, his impact is poised to grow even further. 🌍📈

Shuai Cao | Computer Science and Artificial Intelligence | Best Researcher Award

Shuai Cao | Computer Science and Artificial Intelligence | Best Researcher Award

Dr Shuai Cao, School of Automation, Wuhan University of Technology, China

Dr. Shuai Cao is a dynamic researcher in the field of Computational Intelligence, currently pursuing graduate studies at Kunming University of Science and Technology and engaging in joint research at the Guangdong Academy of Sciences. With a focus on enhancing meta-heuristic algorithms, Dr. Cao has contributed significantly to engineering optimization, especially in AGV path planning and offset printing machine design. He is the mind behind the innovative Piranha Foraging Optimization Algorithm (PFOA) and co-author of several impactful SCI/EI publications. His expertise in algorithm improvement, machine learning, and pattern recognition is reflected through funded projects and hands-on roles in top research institutions like the South China Intelligent Robot Innovation Institute. With a remarkable blend of theoretical insight and practical application, Dr. Cao is a promising candidate for the Best Researcher Award, embodying academic rigor and real-world impact.

Publication Profile 

Orcid

Education

Dr. Shuai Cao’s academic journey began at Baotou Rare Earth High-tech No. 1 High School (2014–2017), where he laid a strong foundation in the sciences. He pursued his undergraduate degree in Mechanical and Electronic Engineering at Chongqing University of Humanities, Science and Technology (2017–2021), gaining critical insights into systems design and robotics. Since 2021, he has been a postgraduate student in Electronic Information at Kunming University of Science and Technology, further sharpening his expertise in computational theory and algorithmic systems. Complementing his studies, Dr. Cao has been engaged in a joint training program at the Intelligent Manufacturing Institute of the Guangdong Academy of Sciences since 2022. His coursework includes meta-heuristic algorithms, machine learning, digital signal processing, and pattern recognition, all of which feed directly into his research in Computational Intelligence and engineering optimization. His interdisciplinary background empowers him to tackle complex problems with innovative solutions.

Experience

Dr. Shuai Cao has held impactful roles in prestigious research institutions. From May 2022 to July 2023, he worked at the Intelligent Manufacturing Institute of the Guangdong Academy of Sciences, where he conducted advanced research on AGV handling robots. This included applying improved intelligent algorithms for path planning and optimization scheduling—work closely aligned with his master’s thesis. Since July 2023, he has been with the South China Intelligent Robot Innovation Institute, applying swarm intelligence methods to optimize the structure of high-speed multi-color offset printing machines. Dr. Cao’s work integrates theoretical research with industrial application, setting a benchmark for practical relevance. His involvement in key science and innovation projects also reflects his growing leadership in the field. From optimization algorithms to real-world robotic systems, Dr. Cao’s hands-on approach is shaping the future of intelligent manufacturing.

Awards and Honors

Dr. Shuai Cao has earned distinguished recognition in both academic and research circles for his innovative contributions to engineering optimization. As a lead researcher on multiple government-funded projects—including “Research and Application of Intelligent Scheduling of Mobile Collaborative Robot Clusters for Intelligent Manufacturing” (Project Code: 2130218003022) and the “Foshan Science and Technology Innovation Team Project” (Project Code: FS0AA-KJ919-4402-0060)—he has demonstrated expertise in bridging theory with practical industrial solutions. His pioneering research has been published in high-impact SCI and EI journals and conferences, such as IEEE ACCESS and the International Conference on Robotics and Automation Engineering (ICRAE). A highlight of his work is the development of the Piranha Foraging Optimization Algorithm (PFOA), which has garnered considerable attention in the optimization community for its novelty and effectiveness. Dr. Cao’s sustained dedication to cutting-edge innovation, along with his leadership in collaborative, cross-disciplinary projects, makes him a compelling nominee for the Best Researcher Award.

Research Focus

Dr. Shuai Cao’s research is centered on Computational Intelligence, specifically the improvement and engineering application of swarm intelligence algorithms. His work addresses key challenges in traditional optimization methods, such as premature convergence, low population diversity, and slow optimization speeds. He has successfully designed algorithms that overcome these limitations, notably the Piranha Foraging Optimization Algorithm (PFOA). His research extends to practical applications like automated guided vehicle (AGV) path planning, scheduling in smart factories, and mechanical structure optimization for high-speed printing systems. Through interdisciplinary methods, he combines machine learning, pattern recognition, and digital signal processing to bring theoretical advancements into real-world manufacturing challenges. With a clear aim of enhancing intelligent manufacturing systems, his research contributes to both academic knowledge and industrial innovation. His growing body of work reflects originality, technical rigor, and a strong alignment with modern engineering demands.

Publication Top Notes