Yue Wu | Machine Learning | Best Researcher Award

Yue Wu | Machine Learning | Best Researcher Award

Assist. Prof. Dr Yue Wu, Hangzhou Dian, China

Assist. Prof. Dr. Yue Wu is a promising young academician whose work bridges the gap between automation, machine learning, and electronic design automation. Currently serving as an Assistant Professor at the School of Electronics and Information Engineering, Hangzhou Dianzi University, China, he exemplifies research excellence through his interdisciplinary expertise. He earned his Ph.D. from Zhejiang University in Aeronautics and Astronautics and a B.S. from Wuhan University of Technology in Automation. His scholarly interests focus on logic synthesis, physical design, and intelligent prediction algorithms using graph neural networks. Despite his early career stage, Dr. Wu has demonstrated impactful contributions to both academia and industry-relevant applications. His recent publication on pre-routing slack prediction using graph attention networks stands out as a novel solution in the realm of EDA. With a strong academic foundation and active research output, Dr. Wu is a fitting nominee for the Best Researcher Award, representing the next generation of innovation in AI-driven engineering.

Publication Profile

Orcid

Education

Dr. Yue Wu has a solid educational foundation in engineering and automation. He earned his Bachelor of Science (B.S.) in Automation from the Wuhan University of Technology in 2018. There, he developed a robust understanding of control systems, signal processing, and computational modeling. Pursuing his academic passion, he undertook doctoral studies at the School of Aeronautics and Astronautics, Zhejiang University, one of China’s premier research institutions. He completed his Ph.D. in 2023, focusing on interdisciplinary topics combining aeronautical engineering, data science, and intelligent systems. His doctoral work incorporated advanced machine learning techniques and their applications in hardware-aware environments, preparing him to lead novel research at the intersection of automation and electronics. This strong academic background equips him with the theoretical depth and practical experience essential for future-forward research in intelligent systems and electronic design automation.

Experience

Dr. Yue Wu is currently serving as an Assistant Professor at the School of Electronics and Information Engineering, Hangzhou Dianzi University, since 2023. Despite being in the early phase of his academic career, he has demonstrated exceptional scholarly promise through teaching, mentorship, and high-impact research. His role involves designing and delivering advanced courses on machine learning, logic circuits, and digital system design while actively supervising undergraduate and graduate research projects. He collaborates with interdisciplinary teams, focusing on the integration of machine learning techniques into physical design and logic synthesis processes, bridging hardware and AI innovations. Prior to this, he was involved in multiple research projects at Zhejiang University during his Ph.D., contributing to algorithm development and experimental validation of graph-based learning techniques. Dr. Wu’s combined expertise in automation, EDA tools, and machine learning positions him as a rising leader in academic research and technological advancement.

Awards and Honors

As a rising scholar, Dr. Yue Wu has been recognized for his academic achievements and research contributions. While specific institutional or national awards are yet to be recorded in the public domain, his selection as a faculty member at Hangzhou Dianzi University, known for its emphasis on electronic and information technology research, is a testament to his academic caliber. His recent first-author publication in the peer-reviewed journal “Automation” (2025) highlights his research excellence and innovation in the application of graph attention networks to pre-routing slack prediction, a complex problem in VLSI design. Additionally, his collaborative projects during his Ph.D. at Zhejiang University received internal recognition and contributed to multiple research grants. Dr. Wu’s research profile is steadily growing, and he is well on the path toward future accolades at the national and international levels as he continues to publish and lead in cutting-edge interdisciplinary domains.

Research Focus

Dr. Yue Wu’s research focuses on the intersection of machine learning and electronic design automation (EDA). His primary interest lies in developing intelligent systems that enhance the physical design and logic synthesis processes used in integrated circuit (IC) design. By leveraging advanced models like graph neural networks (GNNs) and attention-based architectures, Dr. Wu aims to address critical challenges such as slack prediction, timing analysis, and routing optimization. His expertise also extends to hardware-aware machine learning, wherein algorithmic efficiency is optimized for real-world applications in chip manufacturing. His recent work—“Pre-Routing Slack Prediction Based on Graph Attention Network”—demonstrates his ability to combine theoretical AI models with practical EDA problems. By pushing the boundaries of design automation through AI integration, Dr. Wu contributes to faster, smarter, and more power-efficient chip design—critical for the next generation of computing devices. His vision is to make intelligent design automation a core component of future electronics engineering.

Publication Top Notes

Duantengchuan Li | Computer Science and Artificial Intelligence | Best Researcher Award

Duantengchuan Li | Computer Science and Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr Duantengchuan Li, School of Information Management, Wuhan University, Wuhan, China, Cahina

Assoc. Prof. Dr. Duantengchuan Li is a distinguished researcher at the School of Information Management, Wuhan University, China 🎓. His expertise spans Recommender Systems, Knowledge Graphs, Reinforcement Learning, Autonomous Driving, Large Language Models, and Computer Vision 🤖📊. With 40+ publications in top-tier journals and conferences such as IEEE TKDE, ACM TWEB, and AAAI 📜, Dr. Li has earned over 800 citations on Google Scholar 🌍. He has served as a Guest Editor for Electronics and a reviewer for premier journals, including IEEE TNNLS, IEEE TII, and Information Sciences 📝. Dr. Li’s impactful research contributions in AI and machine learning make him a leading expert in the field 🚀. His achievements include multiple national and provincial scholarships and a Bronze Medal in the “Internet+” Competition 🏅. His commitment to advancing AI-driven solutions for real-world applications makes him a strong candidate for the Best Researcher Award 🌟.

Publication Profile

Google Scholar

Education

Dr. Duantengchuan Li holds a Ph.D. in Computer Science from Wuhan University, China 🎓, where he specialized in AI-driven Recommender Systems and Knowledge Graphs 🤖📊. Prior to his Ph.D., he earned a Master’s degree from the Faculty of Artificial Intelligence in Education, Central China Normal University 🏫. His academic journey began with a Bachelor’s degree in Computer Science, where he honed his skills in machine learning, deep learning, and computational intelligence 💻. Throughout his education, he actively engaged in cutting-edge research and contributed to high-impact publications 📜. His strong academic foundation has paved the way for groundbreaking work in large-scale AI applications and intelligent systems 🚀. With an outstanding academic record and multiple scholarships, Dr. Li has established himself as a leading AI researcher, dedicated to advancing computational intelligence, knowledge-based systems, and deep learning architectures 🏆.

Experience

Dr. Duantengchuan Li is currently an Associate Researcher at the School of Information Management, Wuhan University, China 🏫. He has extensive experience in artificial intelligence, knowledge graphs, recommender systems, and deep learning 🤖. Dr. Li has been actively involved in academic publishing, serving as a Guest Editor for Electronics and as a reviewer for prestigious journals like IEEE TKDE, ACM TKDD, and IEEE TNNLS 📝. His research has been featured in top CCF A & B-ranked journals and conferences, including AAAI, ICWS, CAiSE, and IEEE Transactions 📊. Before joining Wuhan University, he completed his Ph.D. in Computer Science, contributing to AI-driven recommendation models 💡. His expertise extends to autonomous driving, reinforcement learning, and computer vision, and he continues to mentor young researchers in AI applications 🚀. His contributions in intelligent computing and AI research have made him a leading figure in his field 🌍.

Awards & Honors

Dr. Duantengchuan Li has received numerous accolades for his contributions to AI and computer science 🏆. In 2023, he led a team to win the Bronze Award in the prestigious “Internet+” Competition 🏅. His academic excellence was recognized with the National Scholarship (2019) 🎓 and the Provincial Outstanding Graduate Award (2017) 🏅. Additionally, he was honored with the Provincial Government Scholarship (2015) for his outstanding performance in research and academics 📜. Dr. Li also holds a Network Engineer Qualification Certification (2016), further demonstrating his technical expertise 💻. His contributions in AI research, particularly in deep learning, recommender systems, and autonomous driving, have earned him a spot among China’s top researchers 🚀. With 40+ high-impact publications and 800+ citations, Dr. Li’s work continues to shape the future of artificial intelligence and machine learning 🌟.

Research Focus

Dr. Duantengchuan Li’s research primarily focuses on Recommender Systems, Knowledge Graphs, Reinforcement Learning, Large Language Models, Autonomous Driving, and Computer Vision 🤖📊. His work explores efficient AI-driven recommendations, leveraging graph neural networks, deep learning, and sequential modeling to improve information retrieval 📜. He has also contributed to structured output evaluation for Large Language Models (LLMs), optimizing their prompt engineering and reasoning capabilities 💡. In autonomous driving, his research enhances intelligent vehicle navigation using deep reinforcement learning 🚗. Additionally, he has developed advanced cold-start QoS prediction models and multi-relation modeling for personalized recommendations 🔍. His work has been published in IEEE TKDE, ACM TOSEM, AAAI, and Information Sciences, demonstrating his cutting-edge innovations in AI applications 🚀. By integrating machine learning, knowledge graphs, and neural networks, Dr. Li continues to advance intelligent computing solutions for real-world problems 🌍.

Publication Top Notes

MFDNet: Collaborative poses perception and matrix Fisher distribution for head pose estimation

EDMF: Efficient deep matrix factorization with review feature learning for industrial recommender system

Multi-perspective social recommendation method with graph representation learning

CARM: Confidence-aware recommender model via review representation learning and historical rating behavior in the online platforms

Knowledge graph representation learning with simplifying hierarchical feature propagation

Knowledge graph representation learning with simplifying hierarchical feature propagation

Precise head pose estimation on HPD5A database for attention recognition based on convolutional neural network in human-computer interaction

Integrating user short-term intentions and long-term preferences in heterogeneous hypergraph networks for sequential recommendation