Rania Hamdani | Computer Science and Artificial Intelligence | Best Researcher Award

Ms. Rania Hamdani | Computer Science and Artificial Intelligence | Best Researcher Award

AE3S | University of luxembourg | Luxembourg 

Rania Hamdani is a dynamic early-career research scientist specializing in software engineering, data management, and cloud architecture for Industry 5.0 applications. Currently based at the University of Luxembourg, she is engaged in advanced research on integrating heterogeneous data sources and optimizing decision-making in cloud-based systems. With a strong foundation in software development and operational research, Rania has already co-authored three research papers in Cloud-Edge AI and ontology-driven knowledge management. Her diverse technical skills span Python, Java, Docker, Kubernetes, and Azure DevOps, and she has gained international experience through roles in Luxembourg, Canada, France, and Tunisia. Passionate about both academic and applied innovation, she has contributed to multiple interdisciplinary projects in AI, human-computer interaction, and intelligent systems. Rania is also active in professional communities such as IEEE and youth science associations, reflecting her commitment to collaborative growth and scientific outreach.

Professional Profile 

Education Background

Rania Hamdani has a strong academic foundation rooted in engineering and scientific rigor. She earned her Engineering Degree in Software Engineering from the National Higher School of Engineers of Tunis (ENSIT) between 2021 and 2024, where she specialized in Advanced Design, Service-Oriented Architecture, Object-Oriented Programming, Database Management, and Operational Research. Prior to that, she completed a Preparatory Cycle for Engineering Studies at the Preparatory Institute for Engineering Studies of Tunis (2019–2021), focusing intensively on mathematics, physics, and core technology subjects—a rigorous program designed to prepare students for elite engineering schools. Rania also holds a Baccalaureate in Mathematics from Pioneer High School Bourguiba Tunis, where she graduated with distinction (Very Good) in 2019. This academic journey has laid a solid foundation for her multidisciplinary research and professional growth in software and data sciences.

Professional Experience 

Rania Hamdani has developed a rich and diverse professional portfolio across academia and industry, with hands-on experience in software engineering, research, and cloud-based technologies. She is currently a Research Scientist at the University of Luxembourg (since November 2024), where she focuses on optimizing decision-making processes in cloud environments through advanced data integration techniques. Prior to this, she served as a Research Intern at the same institution (May to October 2024), contributing to projects in Ontology-Driven Knowledge Management and Cloud-Edge AI, resulting in three published papers. Alongside her academic work, Rania worked as a Part-Time Software Engineer at CareerBoosts in Canada (2021–2025), where she honed her skills in DevOps, data analysis, test automation, and backend development using tools like Python, Docker, and Kubernetes. Her earlier internships include roles at Qodexia (France), Sagemcom (Tunisia), and Tunisie Telecom, where she worked on smart recruitment platforms, employee management systems, and server monitoring tools using full-stack technologies such as SpringBoot, Angular, and PostgreSQL. This blend of research and industry experience positions Rania as a versatile and forward-thinking technology professional.

Research Interests of Rania Hamdani

Rania Hamdani’s research interests lie at the intersection of software engineering, operational research, data integration, and cloud-edge intelligence, with a strong orientation toward Industry 5.0 applications. She is particularly passionate about developing intelligent systems that enhance decision-making in cloud-based and distributed environments, leveraging AI, machine learning, and ontology-driven knowledge frameworks. Her work focuses on enabling seamless management of heterogeneous data sources, scalable architectures, and adaptive human-computer interaction (HCI) systems. Rania is also deeply engaged in exploring Cloud-Edge AI ecosystems, recommender systems, and automation pipelines using modern tools like Docker, Kubernetes, TensorFlow, and Neo4j. Her multidisciplinary approach reflects a vision for integrating research-driven insights with real-world industrial challenges, making her contributions both academically valuable and practically impactful.

Awards and Honors of Rania Hamdani

While still in the early stages of her research career, Rania Hamdani has demonstrated exceptional academic and technical promise. She graduated with a “Very Good” distinction in her Baccalaureate in Mathematics from the prestigious Pioneer High School Bourguiba in Tunis, reflecting her consistent academic excellence. Rania has also earned multiple professional certifications from Microsoft, including Azure Fundamentals, Azure Data Fundamentals, Azure AI Fundamentals, and Azure Security, Compliance, and Identity Fundamentals, showcasing her dedication to staying at the forefront of cloud and AI technologies. Though formal research awards or honors are not yet listed, her early publications, research contributions, and international internships highlight a trajectory poised for future recognition in both academic and industry spheres.

Publications Top Noted

Title: Adaptive human‑computer interaction for Industry 5.0: A novel concept, with comprehensive review and empirical validation
Year: 2025

Conclusion

Rania Hamdani is highly suitable for the Best Emerging Researcher or Young Researcher Award category. She has excellent technical skills, promising early-stage research output, international exposure, and a forward-looking vision in areas like Industry 5.0, cloud-edge intelligence, and AI-based decision systems. While still building her publication track record and academic leadership, her current trajectory shows strong promise for future impactful contributions to scientific and industrial domains.

Luis Pastor Sanchez-Fernandez | Computer Science and Artificial Intelligence | Cross-disciplinary Excellence Award

Prof. Dr. Luis Pastor Sanchez-Fernandez | Computer Science and Artificial Intelligence | Cross-disciplinary Excellence Award

Senior Researcher at Center for Computing Research Instituto Politecncico Nacional, Mexico

Luis Pastor Sánchez-Fernández is a Full Professor at the Computer Research Center of the National Polytechnic Institute (IPN) in Mexico City, with a PhD in Technical Sciences from the José Antonio Echeverría Polytechnic Institute (CUJAE), Havana (1998). A distinguished researcher and educator, he has been a member of Mexico’s National System of Researchers since 2007 (currently Level II). His work spans multiple disciplines, including biomechanics, bioinformatics, environmental acoustics, signal processing, expert systems, and intelligent automation. He has supervised over 13 doctoral and 46 master’s students, many of whom received honors or were inducted into national research systems. Dr. Sánchez-Fernández has led several research groups and CONACYT-funded projects, notably designing the Environmental Noise Monitoring System for the Historic Center of Mexico City. A recipient of the 2014 IPN Applied Research Award, he is also an accomplished keynote speaker, reviewer for high-impact journals, and advocate for interdisciplinary and socially impactful research.

Professional Profile 

🎓 Education of Luis Pastor Sánchez-Fernández

Luis Pastor Sánchez-Fernández holds a PhD in Technical Sciences from the prestigious José Antonio Echeverría Polytechnic Institute (CUJAE) in Havana, Cuba, awarded in 1998. His doctoral education laid a strong interdisciplinary foundation, combining elements of engineering, computer science, and applied research. This academic background has been instrumental in shaping his cross-disciplinary research career, allowing him to contribute significantly to fields such as biomechanics, signal processing, and intelligent systems.

💼 Professional Experience of Luis Pastor Sánchez-Fernández

Luis Pastor Sánchez-Fernández has served as a Full Professor at the Computer Research Center of the National Polytechnic Institute (IPN), Mexico City, since 2000, where he has been a key figure in advancing interdisciplinary scientific research and technological development. With over two decades of academic and research leadership, he has directed multiple research groups in bioinformatics and intelligent measurement systems, supervised numerous postgraduate theses, and mentored future leaders in science. His expertise spans diverse fields including biomechanics, environmental acoustics, expert systems, and automation. He has also played critical roles as a project leader for national research initiatives funded by CONACYT, and as an advisor and evaluator of scientific proposals. His contributions extend beyond academia into societal impact projects, such as the Environmental Noise Monitoring System for Mexico City, solidifying his reputation as a cross-disciplinary innovator and research leader.

🔬 Research Interests of Luis Pastor Sánchez-Fernández

Luis Pastor Sánchez-Fernández’s research interests lie at the intersection of engineering, computer science, health sciences, and environmental studies, reflecting his strong cross-disciplinary approach. He focuses on the biomechanical analysis of patients with Parkinson’s disease, exploring computational and signal-based methods to improve medical diagnostics and rehabilitation. He is also deeply engaged in environmental acoustics, developing noise indicators and acoustic indices to assess and mitigate the harmful effects of urban noise pollution. His work extends into signal pattern recognition, expert systems, virtual instrumentation, and the design of intelligent systems for automation. Additionally, he has a sustained interest in bioinformatics, leading research groups that develop advanced computational tools for biological data analysis. His research consistently integrates theory and practical application, addressing real-world problems through innovative, multidisciplinary solutions.

🏅 Awards and Honors of Luis Pastor Sánchez-Fernández

Luis Pastor Sánchez-Fernández has received several prestigious awards and honors in recognition of his outstanding contributions to interdisciplinary research and academic mentorship. He was honored with the Applied Research Award by the National Polytechnic Institute (IPN) in 2014, acknowledging his impactful work that bridges scientific innovation and real-world application. As a dedicated mentor, he has received two thesis advisor awards from IPN, celebrating the excellence of his supervised postgraduate research. Many of his doctoral and master’s students have earned honorable mentions and Cum Laude distinctions, with several joining Mexico’s National System of Researchers—a testament to his role in cultivating high-caliber scholars. Since 2007, he has held Level II membership in the National System of Researchers of Mexico (SNI), further solidifying his reputation as a leader in cross-disciplinary scientific advancement.

🧾 Conclusion

The candidate demonstrates exceptional cross-disciplinary impact, strong leadership, and a deep commitment to advancing science at the intersection of multiple fields. His contributions in biomechanics, environmental monitoring, signal processing, and intelligent systems showcase not only depth but also the integration of diverse disciplines to address complex societal challenges. He is an ideal nominee for the Cross-disciplinary Excellence Award. Minor enhancements in visibility, global partnerships, and documentation of publications would make his case even more compelling.

📚 Publications by Luis Pastor Sánchez-Fernández

1.Title: Dataset for Gait Assessment in Parkinson’s Disease Patients

  • Authors: (Not provided)
  • Year: (Not explicitly listed)
  • Type: Data Paper – Open Access
  • Citations: 0

2.Title: Innovations and Technological Advances in Healthcare Remote Monitoring Systems for the Elderly and Vulnerable People: A Scoping Review

  • Authors: (Not fully listed)
  • Year: (Not explicitly listed)
  • Type: Review – Open Access
  • Citations: 0

3.Title: Computer Model for Gait Assessments in Parkinson’s Patients Using a Fuzzy Inference Model and Inertial Sensors

  • Authors: (Not fully listed)
  • Journal: Artificial Intelligence in Medicine
  • Year: 2025
  • Citations: 2

4.Title: Motion Smoothness Analysis of the Gait Cycle, Segmented by Stride and Associated with the Inertial Sensors’ Locations

  • Authors: (Not fully listed)
  • Journal: Sensors
  • Year: 2025
  • Type: Article – Open Access
  • Citations: 1

5.Title: Network Long-Term Evolution Quality of Service Assessment Using a Weighted Fuzzy Inference System

  • Authors: (Not fully listed)
  • Journal: Mathematics
  • Year: 2024
  • Type: Article – Open Access
  • Citations: 0

6.Title: Biomechanics of Parkinson’s Disease with Systems Based on Expert Knowledge and Machine Learning: A Scoping Review

  • Authors: (Not listed)
  • Year: (Not explicitly listed)
  • Type: Review – Open Access
  • Citations: 0

7.Title: An Integrated Approach to the Regional Estimation of Soil Moisture

  • Authors: (Not fully listed)
  • Journal: Hydrology
  • Year: 2024
  • Type: Article – Open Access
  • Citations: 0

8.Title: A Fuzzy Inference Model for Evaluating Data Transfer in LTE Mobile Networks via Crowdsourced Data

  • Authors: (Not fully listed)
  • Journal: Computación y Sistemas
  • Year: 2024
  • Type: Article
  • Citations: 1

9.Title: Computer Model for an Intelligent Adjustment of Weather Conditions Based on Spatial Features for Soil Moisture Estimation

  • Authors: (Not fully listed)
  • Journal: Mathematics
  • Year: 2024
  • Type: Article – Open Access
  • Citations: 4

 

 

Raviteja Sista | Computer Science and Artificial Intelligence | Best Researcher Award

Mr. Raviteja Sista | Computer Science and Artificial Intelligence | Best Researcher Award

Research Scholar at Indian Institute of Technology Kharagpur, India

Raviteja Sista is a dynamic and accomplished researcher specializing in Artificial Intelligence, Deep Learning, and Medical Image Analysis. Currently pursuing his Ph.D. at the Indian Institute of Technology Kharagpur with an outstanding GPA of 9.4, he is a recipient of the prestigious Prime Minister’s Research Fellowship. Raviteja holds an MSc in Signal Processing and Communications from the University of Edinburgh and a Bachelor’s in Electronics and Communication Engineering from Osmania University. His research focuses on developing AI-driven frameworks for surgical planning and outcome prediction, with notable contributions to multimodal graph-based learning and surgical video analysis. He has published extensively in top-tier journals such as Medical Image Analysis and Computers in Biology and Medicine, and has actively contributed to international AI challenges and symposia. His technical expertise, academic excellence, and dedication to solving real-world healthcare problems through AI make him a standout figure in the research community.

Professional Profile 

🎓 Education of Raviteja Sista

Raviteja Sista has pursued a stellar academic path marked by excellence and innovation. He is currently enrolled in a Ph.D. program at the Indian Institute of Technology Kharagpur, specializing in Artificial Intelligence at the Centre of Excellence, where he maintains an impressive GPA of 9.4/10. Prior to this, he earned his Master of Science in Signal Processing and Communications with Distinction from the University of Edinburgh (2019–2020). His foundational engineering training was completed with a Bachelor of Engineering in Electronics and Communication from M.V.S.R. Engineering College, affiliated with Osmania University, where he secured a remarkable 85.34%. Raviteja also boasts an outstanding academic record from his early years, achieving 94.6% in Intermediate studies at Narayana Junior College and a CGPA of 9.8/10 in Class X from Lotus National School, Hyderabad.

💼 Professional Experience of Raviteja Sista

Raviteja Sista has a well-rounded professional background that bridges academia, research, and industry. He is currently a Teaching Assistant at IIT Kharagpur, where he supports academic instruction in AI and deep learning. Over the years, he has held teaching roles at several institutions including SRKR Engineering College, CSI Wesley Institute of Technology, Assam Down Town University, and JNTU Kakinada, demonstrating his commitment to education and knowledge dissemination. Complementing his academic roles, Raviteja also gained valuable industry experience as an Associate Software Developer Intern at Accenture Solutions Pvt. Ltd. and through multiple internships at Defence Research and Development Laboratory (DRDL), Hyderabad. His professional journey reflects a strong blend of research, software development, and teaching expertise, all anchored in the field of artificial intelligence and signal processing.

🔬 Research Interests of Raviteja Sista

Raviteja Sista’s research interests lie at the intersection of artificial intelligence and healthcare, with a strong focus on applying deep learning techniques to complex real-world problems. His core areas of interest include Deep Learning, Medical Image Analysis, Digital Signal Processing, Image Processing, Artificial Intelligence, and Design of Algorithms. He is particularly passionate about developing AI-powered systems for surgical planning and automation, leveraging multimodal data, graph neural networks, and computer vision. His work aims to enhance patient safety, improve clinical outcomes, and drive innovation in intelligent medical systems. Raviteja’s commitment to impactful, interdisciplinary research is evident in his projects and publications, which bridge technical depth with healthcare relevance.

🏅 Awards and Honors of Raviteja Sista

Raviteja Sista has been recognized with several prestigious awards and honors that highlight his academic brilliance and research potential. Most notably, he was awarded the Prime Minister’s Research Fellowship (PMRF) in 2022, one of India’s most esteemed research fellowships supporting exceptional doctoral scholars. He also earned a Certificate of Merit for completing the “Advanced Certification in Artificial Intelligence and Machine Learning” from IIIT Hyderabad in 2019. Additionally, Raviteja demonstrated national-level academic excellence by ranking in the Top 3% among over 1 lakh candidates in GATE 2019, a highly competitive examination for engineering graduates in India. These accolades reflect his consistent pursuit of excellence and his growing reputation as a promising researcher in the field of artificial intelligence.

🧾 Conclusion 

Sista Raviteja stands out as a highly qualified, technically accomplished, and visionary researcher in AI for healthcare. With strong academic credentials, impactful projects, respected publications, and active involvement in the scientific community, he demonstrates clear potential for leadership in scientific research.Despite minor areas of potential growth in independent authorship and translational work, his contributions already meet and, in some cases, exceed the typical benchmarks for the Best Researcher Award.

📚 Publications Top Noted

  1. Title: Deep neural hashing for content-based medical image retrieval: A survey
    Authors: A. Manna, R. Sista, D. Sheet
    Journal: Computers in Biology and Medicine, Volume 196, Article 110547
    Year: 2025
    Citations:
  2. Title: Artificial Intelligence (AI)–Based Model for Prediction of Adversity Outcome Following Laparoscopic Cholecystectomy—a Preliminary Report
    Authors: R. Agrawal, S. Hossain, H. Bisht, R. Sista, P.P. Chakrabarti, D. Sheet, U. De
    Journal: Indian Journal of Surgery, Volume 87 (1), Pages 52–59
    Year: 2025
    Citations: 1
  3. Title: Exploring the Limits of VLMs: A Dataset for Evaluating Text-to-Video Generation
    Authors: A. Srivastava, R. Sista, P.P. Chakrabarti, D. Sheet
    Conference: Indian Conference on Computer Vision Graphics and Image Processing (ICVGIP)
    Year: 2024
    Citations:
  4. Title: SimCol3D—3D reconstruction during colonoscopy challenge
    Authors: A. Rau, S. Bano, Y. Jin, P. Azagra, J. Morlana, R. Kader, E. Sanderson, …, R. Sista
    Journal: Medical Image Analysis, Volume 96, Article 103195
    Year: 2024
    Citations: 16
  5. Title: CholecTriplet2022: Show me a tool and tell me the triplet—An endoscopic vision challenge for surgical action triplet detection
    Authors: C.I. Nwoye, T. Yu, S. Sharma, A. Murali, D. Alapatt, A. Vardazaryan, K. Yuan, …, R. Sista
    Journal: Medical Image Analysis, Volume 89, Article 102888
    Year: 2023
    Citations: 29
  6. Title: CholecTriplet2021: A benchmark challenge for surgical action triplet recognition
    Authors: C.I. Nwoye, D. Alapatt, T. Yu, A. Vardazaryan, F. Xia, Z. Zhao, T. Xia, F. Jia, …, R. Sista
    Journal: Medical Image Analysis, Volume 86, Article 102803
    Year: 2023
    Citations: 61
  7. Title: CholecTriplet2022: Show me a tool and tell me the triplet—An endoscopic vision challenge for surgical action triplet detection
    Authors: C.I. Nwoye, T. Yu, S. Sharma, A. Murali, D. Alapatt, A. Vardazaryan, …, R. Sista
    Repository: arXiv, arXiv:2302.06294
    Year: 2023
    Citations:
  8. Title: I’m GROOT: a multi head multi GRaph netwOrk recognizing surgical actiOn Triplets
    Authors: R. Sista, R. Sathish, R. Agrawal, U. De, P.P. Chakrabarti, D. Sheet
    Conference: ICVGIP 2022
    Year: 2022
    Citations: 1
  9. Title: CholecTriplet2021: A benchmark challenge for surgical action triplet recognition
    Authors: C.I. Nwoye, D. Alapatt, T. Yu, A. Vardazaryan, F. Xia, Z. Zhao, …, R. Sista
    Repository: arXiv, arXiv:2204.04746
    Year: 2022
    Citations: 1
  10. Title: I’m GROOT: a multi head multi GRaph netwOrk recognizing surgical actiOn Triplets
    Authors: S. Raviteja, R. Sathish, R. Agrawal, U. De, P.P. Chakrabarti, D. Sheet
    Conference: ICVGIP
    Year: 2022
    Citations:
  11. Title: Challenges of Decomposing Tools in Surgical Scenes Through Disentangling The Latent Representations
    Authors: S.L. Gorantla, R. Sista, A. Srivastava, U. De, P.P. Chakrabarti, D. Sheet
    Workshop: ICLR Workshop on Challenges in Applied Deep Learning (ICBNB)
    Year: 2025 (Accepted)
    Citations:

 

Inga Christina Miadowicz | Computer Science and Artificial Intelligence | Best Researcher Award

Inga Christina Miadowicz | Computer Science and Artificial Intelligence | Best Researcher Award

Mrs Inga Christina Miadowicz, Deutsches Zentrum für Luft- und Raumfahrt, Germany

Dr. Inga Christina Miadowicz is a dedicated researcher specializing in IT management, industrial autonomy, and solar energy systems. She holds a Master’s in IT-Management from FOM Mannheim and a Bachelor’s in Applied Computer Science from DHBW Mannheim. Currently a Research Assistant at Deutsches Zentrum für Luft- und Raumfahrt (DLR), she leads projects in autonomous solar power plants and cyber-physical system infrastructures. Her expertise spans software engineering, distributed systems, and performance optimization. As a university lecturer at DHBW Mannheim, she teaches advanced software engineering and distributed systems. Her contributions to solar power plant digitization, industrial autonomy, and energy management have been published in renowned journals and conferences. She is an active participant in cutting-edge research on 5G communication for solar plants. With a strong foundation in IT architecture, cloud computing, and SAP technologies, she continues to drive innovation in the field of renewable energy and digital transformation. 🔬☀️🚀

Publication Profile

Orcid

Education

Dr. Inga Christina Miadowicz has a solid academic background in IT management and applied computer science. She earned her Master of Science in IT-Management (2018-2021) from Fachhochschule für Oekonomie und Management (FOM), Mannheim, where she specialized in enterprise IT strategies and digital transformation. Her Bachelor of Science in Applied Computer Science (2013-2016) from Duale Hochschule Baden-Württemberg (DHBW), Mannheim, provided her with hands-on experience in software development, system architecture, and distributed computing. She completed her Abitur (2004-2013) at Theodor-Fliedner-Gymnasium, Düsseldorf, establishing a strong foundation in STEM disciplines. Her commitment to continuous learning is reflected in multiple professional certifications, including Certified Business Professional and Certified Solution Professional (FICO), as well as specialized training in Apache Kafka, SAP HANA, SAPUI5, and OData services. Through her graduate program at DLR (since 2022), she continues to enhance her expertise in advanced IT solutions for industrial applications. 📚💡

Experience

Dr. Inga Christina Miadowicz has extensive experience in IT research, software development, and teaching. Since April 2022, she has been a Research Assistant at DLR (Cologne, Germany), leading projects on autonomous solar power plants and industrial autonomy. She has also served as a university lecturer at DHBW Mannheim (since 2018), teaching distributed systems and software engineering. Previously, she was a Lead Developer at FICO (2019-2022), where she developed anti-money laundering software and optimized performance engineering tools. As a Development Consultant at Slenderiser GmbH (2018-2019), she contributed to SAP S/4HANA transformations. Her tenure at SAP SE (2016-2018) focused on cloud and on-premise solutions for consumer industries. She also gained experience as a Dual Studies developer at ALDI SÜD (2013-2016), working on web and cloud computing solutions. Her diverse expertise in cyber-physical systems, SAP development, and IT architecture makes her a leading researcher in the field. 🚀🌞

Awards and Honors

Dr. Inga Christina Miadowicz has been recognized for her contributions to IT management, software engineering, and renewable energy research. She was awarded the Chinese Government Scholarship for her exceptional academic achievements. Her graduate program at DLR is a testament to her dedication to cutting-edge industrial research. She has received multiple professional certifications, including Certified Business Professional and Certified Solution Professional (FICO), as well as specialized SAP certifications like C_FIORIDEV_20. Her work on autonomous solar power plants and 5G communication for solar plants has been featured at prestigious conferences like SolarPACES. Her performance engineering contributions at FICO helped optimize anti-money laundering software, earning industry recognition. As a university lecturer, she has mentored numerous students in software development and distributed systems. Her commitment to research, education, and technological advancement positions her as a strong candidate for the Best Researcher Award. 🎖️📡☀️

Research Focus

Dr. Inga Christina Miadowicz focuses on industrial autonomy, digital transformation, and renewable energy optimization. At DLR, she leads research on autonomous solar power plants, developing cyber-physical systems and AI-driven automation for power plant operations. Her work integrates 5G communication networks with solar tower plants, enhancing real-time data processing and remote control capabilities. She specializes in distributed systems, software engineering, and cloud-based industrial solutions, particularly in SAP S/4HANA, Fiori applications, and performance engineering. Her research extends to data-driven hardware sizing tools, automation frameworks, and performance optimization for large-scale infrastructure. Her expertise in cybersecurity, IT architecture, and advanced analytics enables her to drive innovation in industrial digitalization. Through her publications in Solar Energy Advances and SolarPACES Conference Proceedings, she contributes to the advancement of solar energy integration and digital infrastructure for smart grids. Her work bridges the gap between IT, industrial automation, and sustainable energy solutions. 🌞📊💡

Publication Top Notes

📄 An Action Research Study on the Digital Transformation of Concentrated Solar Thermal PlantsSolar Energy Advances (2025)
📄 An Action Research Study on the Digital Transformation of Concentrated Solar Thermal PlantsSolar Energy Advances (2024-11-19)
📄 5G as Communication Platform for Solar Tower PlantsSolarPACES Conference Proceedings (2024-07-24)
📄 5G as Communication Platform for Solar Tower PlantsSolarPACES Conference Proceedings (2024-07-24, DOI: 10.52825/solarpaces.v2i.858)
📄 5G as Communication Platform for Solar Tower Plants29th International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2023

Ali Othman Albaji | Computer Science and Artificial Intelligence | Best Researcher Award

Ali Othman Albaji | Computer Science and Artificial Intelligence | Best Researcher Award

Dr Ali Othman Albaji, Libyan Authority for Scientific Research, Libya

With a Bachelor’s in Electrical Engineering and a Master’s in Electronics & Telecommunications from Universiti Teknologi Malaysia, this accomplished professional has extensive experience in academia and industry. Currently an Assistant Professor at the Higher College of Science and Technology in Libya, they also lead CR Technology System in the MENA region. Their research interests include optical wireless technologies and machine learning applications in environmental monitoring. Fluent in Arabic and English, with a diploma in Italian, they are also the President of the Postgraduate Student Society at UTM. 📡🎓🌍✍️

Publication profile

google scholar

Academic Background 

With a diverse academic journey, the individual holds a Master’s in Public Management and Leadership from the London School of Economics (LSE), UK, completed in 2010. They further pursued a Master in Electronics and Telecommunications at the University Technology Malaysia from 2019 to 2023. Their foundational education includes a Bachelor’s degree in Electrical Engineering, specializing in General Communications, from the Civil Aviation Higher College in Tripoli, Libya, earned in 2007. Additionally, they completed a Diploma in the Italian language during the 2011/2012 academic year. 🎓📡

Experience

Dr. Ali Othman Albaji boasts a diverse work history across reputable organizations. He started as a Sales Advisor at Akida Company (LG) and ZTE/Telecom China, honing his expertise in the telecommunications field. His academic journey includes significant roles as an Assistant Professor and lecturer in Electronics and Telecommunications. In addition to his teaching, he has demonstrated leadership as the Chairman of CR Technology System (CRTS Group) and the President of the Postgraduate Student Society at Universiti Teknologi Malaysia. Dr. Albaji’s commitment to both academia and industry underscores his dedication to advancing technology and education. 📡🎓💼🌟

Main Hard Skills 

Dr. Albaji possesses a robust set of technical skills, including proficiency in CAD Design, MATLAB Simulation Analysis, Python, and data visualization tools like Tableau. His capabilities extend to qualitative and quantitative analysis, SCADA systems, and programming languages like Verilog and HTML. These skills enable him to tackle complex research problems and contribute innovatively to his field. 

Languages 

Fluent in Arabic and English, with an IELTS Band Score of 8.5, Dr. Albaji also has a very good command of Italian. This linguistic proficiency allows him to collaborate with international researchers and disseminate his work to a broader audience. 

Research focus

Ali Othman Albaji’s research focus centers on machine learning applications in environmental noise classification, emphasizing smart cities and mobile communications. His work includes developing algorithms for monitoring and classifying noise pollution using MATLAB, contributing to urban planning and public health. He has also explored traffic noise impacts on residential areas and mobile telecommunications in Libya. His diverse research interests extend to the design and implementation of communication systems, highlighting the integration of technology in environmental studies. Through these contributions, Albaji aims to enhance noise management and promote sustainable urban environments. 🌍📊🔊📡

Publication top notes

Investigation on Machine Learning Approaches for Environmental Noise Classifications

A Machine Learning for Environmental Noise Monitoring and Classification Using Matlab

Machine Learning for Environmental Noise Classification in Smart Cities

Designing the Global System for Mobile Communications GSM-900 Cellular Network up to the Nominal Cell Plan in Tripoli, Libya

Conclusion and Recommendations

A Review of Traffic Highway Noise Towards Residential Area

NOISE POLLUTION DATA REPORTING AND WAREHOUSING USING TABLEAU SOFTWARE

Designing and Implementing a Signed Multiplier Radix-2 Using Booth’s Algorithm

Jerzy Montusiewicz | Computer Science and Artificial Intelligence | Best Researcher Award

Jerzy Montusiewicz | Computer Science and Artificial Intelligence | Best Researcher Award

Mr Jerzy Montusiewicz, Lublin University of Technology, Department of Computer Science, Poland

Based on the research achievements of Prof. Jerzy Montusiewicz, he appears to be a strong candidate for the Best Researcher Award. Here’s a summary of his contributions and achievements:

Publication profile

google scholar

Research Summary for Best Researcher Award

1. K-medoids Clustering and Fuzzy Sets for Isolation Forest
Montusiewicz co-authored this 2021 IEEE International Conference on Fuzzy Systems paper on clustering and fuzzy sets, highlighting advanced methodologies in data analysis. This work is cited for its impact on clustering techniques in complex datasets.

2. Preparation of 3D Models of Cultural Heritage Objects to be Recognized by Touch by the Blind—Case Studies
In this 2022 Applied Sciences publication, Montusiewicz contributed to developing 3D models of cultural heritage objects accessible to the visually impaired, showcasing his commitment to inclusivity in digital heritage.

3. Comparative Analysis of Digital Models of Objects of Cultural Heritage Obtained by the “3D SLS” and “SfM” Methods
This 2021 study, published in Applied Sciences, explores the comparative effectiveness of different 3D scanning methods for cultural heritage preservation, reflecting Montusiewicz’s expertise in digital preservation techniques.

4. 3D Scanning and Visualization of Large Monuments of Timurid Architecture in Central Asia—A Methodical Approach
Montusiewicz’s 2020 Journal on Computing and Cultural Heritage article demonstrates innovative methods for scanning large historical monuments, emphasizing his contributions to preserving Central Asian architectural heritage.

5. Virtual and Interactive Museum of Archaeological Artefacts from Afrasiyab—An Ancient City on the Silk Road
This 2020 paper in Digital Applications in Archaeology and Cultural Heritage presents the creation of a virtual museum for archaeological artefacts, illustrating Montusiewicz’s role in advancing digital tools for archaeology.

6. A Decomposition Strategy for Multicriteria Optimization with Application to Machine Tool Design
Montusiewicz’s 1990 publication in Engineering Costs and Production Economics addresses optimization strategies in machine tool design, demonstrating his early contributions to engineering and optimization techniques.

7. Structured-Light 3D Scanning of Exhibited Historical Clothing—A First-Ever Methodical Trial and Its Results
This 2021 Heritage Science study, co-authored by Montusiewicz, represents a pioneering effort in 3D scanning of historical clothing, marking a significant advancement in the field of heritage science.

8. Documenting the Geometry of Large Architectural Monuments Using 3D Scanning—The Case of the Dome of the Golden Mosque of the Tillya-Kori Madrasah in Samarkand
Montusiewicz’s research, published in 2022, focuses on documenting the geometry of significant architectural monuments, highlighting his continued impact on architectural preservation through advanced scanning techniques.

Prof. Montusiewicz’s diverse research, spanning from advanced 3D scanning techniques to the preservation of cultural heritage, underscores his significant contributions to the fields of computer graphics and digital preservation. His innovative approaches and practical applications make him an exemplary candidate for the Best Researcher Award.

Research focus

Based on the provided publications, the research focus appears to be in digital heritage preservation and 3D scanning technologies. The work of J. Montusiewicz and collaborators emphasizes creating and analyzing 3D models of cultural heritage objects, including methods for blind accessibility and the application of scanning technologies for historical artifacts and architecture. This includes comparative studies of different scanning methods and their effectiveness, as well as the development of interactive digital museums. Their research contributes significantly to both the preservation of cultural heritage and the advancement of technological applications in archaeology. 🏛️🔍📏

Publication top notes

K-medoids clustering and fuzzy sets for isolation forest

Preparation of 3D models of cultural heritage objects to be recognised by touch by the blind—case studies

Comparative analysis of digital models of objects of cultural heritage obtained by the “3D SLS” and “SfM” methods

3D Scanning and Visualization of Large Monuments of Timurid Architecture in Central Asia–A Methodical Approach

Virtual and interactive museum of archaeological artefacts from Afrasiyab–an ancient city on the silk road

A decomposition strategy for multicriteria optimization with application to machine tool design

Structured-light 3D scanning of exhibited historical clothing—a first-ever methodical trial and its results

 

ABDULKADIR DAUDA | Computer Science and Artificial Intelligence | Best Researcher Award

ABDULKADIR DAUDA | Computer Science and Artificial Intelligence | Best Researcher Award

ABDULKADIR DAUDA, University of Reims Champagne-Ardenne, France

Based on the information provided, Mr. Abdulkadir Dauda appears to be a strong candidate for the Best Researcher Award. His academic background, professional experience, and research contributions highlight his qualifications and impact in the field of computer science. Below is an evaluation of his suitability for the award:

Publication profile

Orcid

Academic and Professional Qualifications

Mr. Dauda has a robust academic background, including a Master of Science Degree in Computer Science with Distinction and ongoing doctoral studies at Universite De Reims Champagne-Ardenne, France. His academic achievements, particularly his distinction at the Master’s level, underscore his dedication and capability in his field.

Work Experience and Contributions

Mr. Dauda’s professional experience as a Lecturer II in the Department of Computer Science at the Federal University of Lafia (2014-2022) demonstrates his commitment to education and research. He has taken on significant roles, such as Departmental Examination Officer and Programme Coordinator, which show his leadership and involvement in academic administration. His work in system and network administration during his tenure at the Federal Capital Territory Judiciary further highlights his practical expertise in computer science.

Research Contributions

Mr. Dauda has an impressive portfolio of research publications that focus on critical areas such as IoT Security, High-Performance Computing, and Distributed and Parallel Architectures. His publications in reputed journals and conferences, including the 2023 International Conference on Wireless Networks and Mobile Communications (WINCOM), demonstrate his active engagement in advancing knowledge in these fields. His collaborative work with international scholars further reflects the quality and impact of his research.

Research Interests and Impact

Mr. Dauda’s research interests in emerging and high-impact areas like IoT Security and Big Data are particularly relevant in today’s technological landscape. His contributions to these fields, through both his research and practical work, suggest a deep understanding and innovative approach to solving complex problems in computer science.

Conclusion

Mr. Abdulkadir Dauda’s academic excellence, professional experience, and significant research contributions make him a suitable candidate for the Best Researcher Award. His work not only advances the field of computer science but also demonstrates a commitment to teaching, mentoring, and community service, further solidifying his qualification for this honor.

Publication top notes

A Survey on IoT Application Architectures