Kangchun Lee | Chemistry and Materials Science | Best Researcher Award

Kangchun Lee | Chemistry and Materials Science | Best Researcher Award

Prof Kangchun Lee, KyonggiUniversity, South Korea

Based on the information provided, Prof. Kangchun Lee appears to be a strong candidate for the Best Researcher Award due to his significant achievements and contributions in his field. Here’s a summary of why he stands out.

Publication profile

google scholar

Education and Professional Background

Prof. Kangchun Lee holds a Ph.D. in Energy Engineering from Hanyang University (2020) and a B.S. in Materials Science and Engineering from the same institution (2014). His career began as a Staff Engineer at Samsung Electronics’ Semiconductor R&D Center, where he worked from September 2020 to February 2023. He is currently an Assistant Professor in the Department of Electronic Engineering at Kyonggi University, starting in March 2023. His experience includes comprehensive work on GAA-based semiconductor processes and advanced process development for sub-3nm and sub-2nm semiconductor integration.

Academic and Professional Contributions

Prof. Lee has actively participated in various academic committees and roles, including the International Conference on Planarization/CMP Technology (ICPT) program committee, Korea CMP User Group Meeting (CMPUGM) committee, and as a Topical Advisory Panel Member for Applied Sciences. His involvement in the Early Career Scholars Program and as a Guest Editor for Applied Sciences further highlights his engagement with the academic community.

Awards and Recognition

Prof. Lee has received several prestigious awards, including the Best Paper Award in 2022 from Samsung Electronics and scholarship awards from the Korea Semiconductor Industry Association (2019) and Korea Ceramic Society (2013). These accolades underscore his impactful research and recognition within the industry.

Publications and Research Impact

Prof. Lee’s research has been widely published, with notable contributions to journals such as ECS Journal of Solid State Science and Technology, Materials Science in Semiconductor Processing, and Applied Surface Science. His work covers critical topics such as CMP performance enhancement, advanced CMP slurry compositions, and eco-friendly chemical mechanical planarization techniques. His research is highly cited, reflecting its significance and influence in the field.

Summary

Prof. Kangchun Lee’s educational background, professional experience, active academic involvement, and prestigious awards make him a compelling candidate for the Best Researcher Award. His extensive research output and contributions to semiconductor technology and materials science demonstrate his excellence and impact in his field.

Publication top notes

Tailored electronic structure of Ir in high entropy alloy for highly active and durable bi‐functional electrocatalyst for water splitting under acidic environment

Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption

Fenton-like reaction between copper ions and hydrogen peroxide for high removal rate of tungsten in chemical mechanical planarization

Ce3+-enriched core–shell ceria nanoparticles for silicate adsorption

Highly reversible cycling with Dendrite-Free lithium deposition enabled by robust SEI layer with low charge transfer activation energy

Galvanic corrosion inhibition from aspect of bonding orbital theory in Cu/Ru barrier CMP

Preparation and characterization of slurry for CMP

Synergistic Effect of Mixed Particle Size on W CMP Process: Optimization Using Experimental Design

Optimizing a blend of a mixture slurry in chemical mechanical planarization for advanced semiconductor manufacturing using a posterior preference articulation approach to dual …

Suppression of Dissolution Rate via Coordination Complex in Tungsten Chemical Mechanical Planarization

Tamara Erceg | Chemistry and Materials Science | Hypothesis Achievement Award

Tamara Erceg | Chemistry and Materials Science | Hypothesis Achievement Award

Dr Tamara Erceg, Faculty of Technology Novi Sad, Serbia

Dr. Tamara Erceg is a Research Associate at the Faculty of Technology Novi Sad, University of Novi Sad, with a Ph.D. in Polymer Science. Her research focuses on polymer materials, including their design, synthesis, and recycling, emphasizing green chemistry and biodegradable packaging. Dr. Erceg is involved in educational activities, teaching courses in synthetic polymer chemistry and polymer processing. She has published extensively on biobased materials and active packaging, contributing to high-impact journals. Additionally, she reviews papers for top-tier journals and is engaged in various academic and scientific committees. 🌿🔬📚

Publication profile

Scopus

Education

Dr. Tamara Erceg holds a Ph.D. in Polymer Science from the University of Novi Sad, completed in 2019 with an impressive average grade of 10.00. Their doctoral thesis focused on “Structuring of Polymer Networks Based on Acrylamide and Acrylic Acid.” Prior to this, Dr. [Name] earned both an MSc and a Bachelor’s degree in Pharmaceutical Engineering from the same university, graduating with an average of 9.70. Their Master’s thesis explored “The Properties of Water-in-Oil Emulsions Stabilized by Polyglycerol Polyester Emulsifiers.” 🧪🎓

Experience

Since 2013, Tamara Erceg has been delivering private lectures on Probability and Statistics, and Chemistry 📚. Since 2016, they have been actively involved in educational and pedagogical work at the Faculty of Technology, University of Novi Sad 🎓. Their responsibilities include conducting and preparing laboratory and computational exercises for Materials Engineering courses such as Synthetic Polymer Chemistry, Plastic Processing Technology, and Recycling of Polymer Materials 🧪🔬. They also contribute to research funded by the Ministry of Education, Science, and Technological Development of the Republic of Serbia 🌟🔍. [Name] is dedicated to advancing both teaching and research in the field.

Projects

From 2010 to 2019, the user contributed to nanocomposites and functional materials research funded by the Serbian Ministry of Education. They have since engaged in diverse projects, including biodegradable materials, diagnostic probes, and bioeconomy applications. Notable roles include managing the “E-NOSE” Horizon Europe project (2023) and leading the “BugControl” initiative (2024). Other projects involve optimization of food carbohydrates, waste valorization, and advanced hydrogels for agriculture. They have also collaborated internationally on quantum correlations and wearable smart patches. Their work spans significant research funding and innovative developments. 🌍🔬📈🌱🧪

Research focus

Based on the provided research publications, the individual’s research focus seems to center on sustainable and eco-friendly materials in food and packaging industries. Their work includes developing biodegradable films, active coatings, and nanotechnology-based coatings, which aim to enhance food preservation and packaging efficiency. They also explore the incorporation of natural substances like essential oils and plant-based extracts for improving product stability and shelf life. The research emphasizes using biopolymers and plant-derived materials to create environmentally friendly and functional products. 🌱📦🔬

Publication top notes

Updating the Status quo on the Eco-Friendly Approach for Antioxidants Recovered from Plant Matrices Using Cloud Point Extraction

Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life

Preparation and Characterization of PHBV/PCL-Diol Blend Films

Progress in Fruit and Vegetable Preservation: Plant-Based Nanoemulsion Coatings and Their Evolving Trends

Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers

Insight on Incorporation of Essential Oils as Antimicrobial Substances in Biopolymer-Based Active Packaging

Preparation and characterization of biodegradable cellulose acetate-based films with novel plasticizer obtained by polyethylene terephthalate glycolysis intended for active packaging

Fortification of chocolate with microencapsulated fish oil: Effect of protein wall material on physicochemical properties of microcapsules and chocolate matrix

A comprehensive approach to chitosan-gelatine edible coating with β-cyclodextrin/lemongrass essential oil inclusion complex — Characterization and food application