Lin He | Chemistry and Materials Science | Best Researcher Award

Lin He |Chemistry and Materials Science | Best Researcher Award

Prof Lin He, Shihezi University, China

Prof. Lin He is a distinguished Organic Chemist, currently a Full Professor at Shihezi University, specializing in synthetic methodology and organocatalysis. He earned his Ph.D. in Organic Chemistry from the Chinese Academy of Sciences (2005-2008), and his M.S. and B.S. degrees from the University of Science and Technology of China and Qufu Normal University. He has been a visiting scholar at the University of Bristol (2017-2018). Prof. He has published numerous research articles on aryne reactions, multi-component reactions, and visible-light photochemistry, contributing significantly to the field of organic synthesis. 🧪🔬📚🌟

Publication Profile

Scopus

Education

Prof. Lin He has an extensive academic background in Organic Chemistry. He earned his Ph.D. in Organic Chemistry from the Institute of Chemistry, Chinese Academy of Sciences (2005-2008), after completing his M.S. in Organic Chemistry at the University of Science and Technology of China (2002-2005). Prior to that, he obtained his B.S. in Chemistry from Qufu Normal University (1998-2002). Prof. He’s research journey reflects a strong foundation in chemistry, contributing to advancements in the field. 🌟📚🧪

Experience

Prof. Lin He is a distinguished academic in Organic Chemistry. From October 2014, he has served as a Full Professor at the School of Chemistry and Chemical Engineering, Shihezi University. Previously, from 2008 to 2014, he was an Associate Professor at the same institution. In addition, he was a CSC Visiting Scholar at the University of Bristol from March 2017 to March 2018, further enhancing his expertise in the field. Prof. He’s contributions to organic chemistry research and education are widely recognized, and he continues to inspire both students and colleagues. 🔬📚🌍

Research Interests

Prof. Lin He is a leading expert in synthetic methodology, specializing in the development of efficient and innovative approaches for organic synthesis. His research focuses on organocatalysis, a powerful technique that uses small organic molecules to catalyze chemical reactions. This field has gained significant attention due to its sustainability, selectivity, and mild reaction conditions. Prof. He’s work has contributed to expanding the scope of organocatalysis, enabling the creation of complex molecules with precision and efficiency. His contributions have paved the way for greener and more sustainable chemical processes, with broad applications in pharmaceuticals and materials science. 🧪🔬🌿

Research Focus

Prof. Lin He focuses on advanced synthetic organic chemistry, with particular expertise in N-heterocyclic carbene (NHC)-catalyzed reactions. His research includes the development of novel catalytic systems for C–P coupling, sulfur and selenium chemistry, and asymmetric synthesis of complex molecules. Prof. He also explores photoinduced electron transfer in lignin model systems and the creation of functionalized sulfilimines and chiral amines. His work contributes significantly to sustainable chemical processes and materials science, particularly in the context of energy and environmental applications. Key topics include catalysis, photoinduced reactions, and the synthesis of bioactive compounds. 🧪🔬⚗️🌱

Publication Top Notes

Photoinduced Single Electron Reduction of the 4-O-5 Linkage in Lignin Models for C-P Coupling Catalyzed by Bifunctional N-Heterocyclic Carbenes

Trideuteromethylthiolation through Reaction of Arynes, S-Methyl-d3 Sulfonothioate with Sulfonamides or Amides: Access to Trideuteromethylated Sulfilimines

N-Heterocyclic Carbene (NHC)-Catalyzed [3+2] Cycloaddition to Highly Diastereoselective Synthesis of Spirooxindole Dihydrofuran Fused Pyrazolone Compounds 

Asymmetric Synthesis of Tertiary α-Hydroxylation-Cyclopentanones via Synergetic Catalysis of Chiral-at-Metal Rhodium(III) Complexes/Pyrrolidine

Chalcogen bonding enabled photosynthesis of aryl selenides from aryl sulfonium salts

SuFEx Reactions of Sulfonyl Fluorides, Fluorosulfates, and Sulfamoyl Fluorides Catalyzed by N-Heterocyclic Carbenes

Divergent synthesis of chiral amines via Ni-catalyzed chemo- and enantioselective hydrogenation of alkynone imines

Conclusion

Prof. Lin He’s distinguished academic career and impactful research in Organic Chemistry make him a strong contender for the Best Researcher Award. His groundbreaking work in synthetic methodologies and organocatalysis has advanced the field, bringing innovative solutions to chemical research. With numerous influential publications and continuous contributions, Prof. He has significantly impacted the scientific community. His excellence in both research and teaching has earned him recognition as a leader in his field. His dedication to advancing knowledge in Organic Chemistry highlights his deserving candidacy for this prestigious award. 🏅🔬📚🧪

 

 

Weiquan Cai | Chemistry and Materials Science | Best Researcher Award

Weiquan Cai | Chemistry and Materials Science | Best Researcher Award

Prof Weiquan Cai, School of Chemistry and Chemical Engineering, Guangzhou University, China

Prof. Weiquan Cai: A Leading Contender for the Best Researcher Award.

Publication profile

google scholar

Academic and Professional Background

Prof. Weiquan Cai is a Distinguished Professor and Academic Leader at Guangzhou University, holding this position since 2017. He earned his BS in Chemical Technology from Wuhan Institute of Technology in 1995, an MS in Environmental Engineering from China University of Petroleum in 2002, and a PhD in Chemical Technology from the Institute of Process Engineering, Chinese Academy of Sciences in 2005. His postdoctoral research focused on Material Chemistry and Physics at Wuhan University of Technology, and he was a visiting scholar at Kent State University (2009-2010). In 2012, he joined Wuhan University of Technology as a professor in the School of Chemical Engineering.

Research and Innovations

Prof. Cai has led over 30 research projects funded by various government bodies and enterprises, including five from the National Natural Science Foundation of China and four from Guangdong Provincial Science and Technology Plan. His research includes notable industrial applications, such as a high-efficiency grease cleaning agent. He has published over 200 papers, with around 165 indexed by SCI, including nine Highly Cited Papers. His work has earned significant citations and includes over 115 national invention patents, with 60 granted. His research has led to advancements in materials and chemical engineering, evidenced by his recent publications in prominent journals like Fuel and Chemical Engineering Journal.

Books Published (ISBN)

Prof. Cai co-authored “Chemical Engineering Principles Experiment” (ISBN: 978-7-5629-3466-0), published by Wuhan University of Technology Press in 2011, alongside Guangxu Zhang and Xuanjun Wu.

Patents Published/Under Process

He holds more than 115 national invention patents, with 60 authorized, including one USA invention patent.

Recent Journal Publications

Sorptive-enhanced biogas steam reforming over Pb-modified Ni-CaO bifunctional catalysts (Fuel, 2024). Immobilization of Ni on MOF-derived CeO2 for low-temperature dry reforming of methane (Fuel, 2024). Preparation of poly (vinyl alcohol)/polydopamine/tannin acid coupling of heterogeneous advanced oxidation processes and photocatalysis (Chemical Engineering Journal, 2024).

Publication top notes

Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and …

Synthesis of hierarchical Ni (OH) 2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water

Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties

Template-free synthesis of hierarchical spindle-like γ-Al 2 O 3 materials and their adsorption affinity towards organic and inorganic pollutants in water

Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO2 Reduction to HCOOH

Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment

Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull

Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53 (Fe) under visible light irradiation

Preparation and properties of quaternary ammonium chitosan-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogels