Anna Nikitjuka | Chemistry and Materials Science | Best Researcher Award

Anna Nikitjuka | Chemistry and Materials Science | Best Researcher Award

Dr Anna Nikitjuka, Latvian Institute of Organic Synthesis, Latvia

Dr. Anna Nikitjuka, she appears to be a strong candidate for the Research for Best Researcher Award. Here’s an analysis of her qualifications, work experience, projects, and publications, concluding with a summary of her suitability for the award.

Publication profile

Orcid

Education

Dr. Nikitjuka holds a Doctorate in Chemical Science from the University of Latvia, where she worked under the supervision of Prof. Dr. Aigars Jirgensons. She also earned a Master of Natural Sciences in Chemistry from the same institution, further demonstrating her extensive background in chemistry.

Work Experience

Dr. Nikitjuka has an impressive track record of research experience, including her current position as a Principal Researcher at the Latvian Institute of Organic Synthesis. Her previous roles include a Researcher and Research Assistant at the same institute, showcasing a continuous commitment to advancing chemical research. She has also engaged in multiple postdoctoral projects across prominent European universities, enhancing her international exposure and collaboration experience.

Reviewer and Editorial Experience

Dr. Nikitjuka has served as a reviewer for esteemed journals such as Medicinal Chemistry Research and has taken on editorial roles, including co-guest editor for a special issue on Anti-Cancer Agents in Medicinal Chemistry. This involvement highlights her active engagement in the scientific community and her commitment to advancing research in medicinal chemistry.

Projects

Dr. Nikitjuka has led several significant research projects, such as the PostDoc grant and ISIDORA project, reflecting her leadership capabilities and expertise in the field. Her involvement in these projects indicates her ability to drive research initiatives successfully.

Publication top notes

Given Dr. Anna Nikitjuka’s robust educational background, extensive research experience, active involvement in the scientific community through editorial roles, and her impactful publications, she is indeed a suitable candidate for the Research for Best Researcher Award. Her commitment to advancing knowledge in chemistry and her leadership in significant projects demonstrate her potential to make substantial contributions to the field.

 

 

Kangchun Lee | Chemistry and Materials Science | Best Researcher Award

Kangchun Lee | Chemistry and Materials Science | Best Researcher Award

Prof Kangchun Lee, KyonggiUniversity, South Korea

Based on the information provided, Prof. Kangchun Lee appears to be a strong candidate for the Best Researcher Award due to his significant achievements and contributions in his field. Here’s a summary of why he stands out.

Publication profile

google scholar

Education and Professional Background

Prof. Kangchun Lee holds a Ph.D. in Energy Engineering from Hanyang University (2020) and a B.S. in Materials Science and Engineering from the same institution (2014). His career began as a Staff Engineer at Samsung Electronics’ Semiconductor R&D Center, where he worked from September 2020 to February 2023. He is currently an Assistant Professor in the Department of Electronic Engineering at Kyonggi University, starting in March 2023. His experience includes comprehensive work on GAA-based semiconductor processes and advanced process development for sub-3nm and sub-2nm semiconductor integration.

Academic and Professional Contributions

Prof. Lee has actively participated in various academic committees and roles, including the International Conference on Planarization/CMP Technology (ICPT) program committee, Korea CMP User Group Meeting (CMPUGM) committee, and as a Topical Advisory Panel Member for Applied Sciences. His involvement in the Early Career Scholars Program and as a Guest Editor for Applied Sciences further highlights his engagement with the academic community.

Awards and Recognition

Prof. Lee has received several prestigious awards, including the Best Paper Award in 2022 from Samsung Electronics and scholarship awards from the Korea Semiconductor Industry Association (2019) and Korea Ceramic Society (2013). These accolades underscore his impactful research and recognition within the industry.

Publications and Research Impact

Prof. Lee’s research has been widely published, with notable contributions to journals such as ECS Journal of Solid State Science and Technology, Materials Science in Semiconductor Processing, and Applied Surface Science. His work covers critical topics such as CMP performance enhancement, advanced CMP slurry compositions, and eco-friendly chemical mechanical planarization techniques. His research is highly cited, reflecting its significance and influence in the field.

Summary

Prof. Kangchun Lee’s educational background, professional experience, active academic involvement, and prestigious awards make him a compelling candidate for the Best Researcher Award. His extensive research output and contributions to semiconductor technology and materials science demonstrate his excellence and impact in his field.

Publication top notes

Tailored electronic structure of Ir in high entropy alloy for highly active and durable bi‐functional electrocatalyst for water splitting under acidic environment

Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption

Fenton-like reaction between copper ions and hydrogen peroxide for high removal rate of tungsten in chemical mechanical planarization

Ce3+-enriched core–shell ceria nanoparticles for silicate adsorption

Highly reversible cycling with Dendrite-Free lithium deposition enabled by robust SEI layer with low charge transfer activation energy

Galvanic corrosion inhibition from aspect of bonding orbital theory in Cu/Ru barrier CMP

Preparation and characterization of slurry for CMP

Synergistic Effect of Mixed Particle Size on W CMP Process: Optimization Using Experimental Design

Optimizing a blend of a mixture slurry in chemical mechanical planarization for advanced semiconductor manufacturing using a posterior preference articulation approach to dual …

Suppression of Dissolution Rate via Coordination Complex in Tungsten Chemical Mechanical Planarization