Alexandra Kuriganova | Chemistry and Materials Science | Best Researcher Award

Alexandra Kuriganova | Chemistry and Materials Science | Best Researcher Award

Prof. Dr Alexandra Kuriganova, Platov South-Russian State Polytechnic University, Russia

Prof. Dr. Alexandra Kuriganova is a distinguished researcher in electrochemical nanomaterials, specializing in fuel cells, supercapacitors, and lithium-ion batteries πŸ”¬βš‘. She earned her Diplom (2008) and Ph.D. (2011) from South Russian State Technical University, focusing on nanosized Pt/C catalysts for proton exchange membrane fuel cells (PEMFC) πŸ”₯πŸ”‹. Her international research collaborations span Germany πŸ‡©πŸ‡ͺ, France πŸ‡«πŸ‡·, and Russia πŸ‡·πŸ‡Ί, leading to innovative breakthroughs in catalyst development. Currently an Associate Professor and Senior Research Fellow at Platov South Russian State Polytechnic University, she has made significant contributions to nanodispersed metal oxides for energy applications πŸŒπŸ”Ž. Her work in pulse electrolysis and electrochemical dispersion techniques has redefined electrocatalyst synthesis, resulting in numerous high-impact publications πŸ“š. A dedicated scientist and educator, she continues to advance nanotechnology for sustainable energy solutions, collaborating with leading institutions worldwide πŸŒ±πŸ’‘.

Publication Profile

Scopus

Education

Prof. Dr. Alexandra Kuriganova earned a Diplom (2008) in Chemical Technology of High-Molecular Compositions from South Russian State Technical University (Novocherkassk Polytechnic Institute), Novocherkassk. He continued his studies at the same institution, obtaining a Ph.D. (2011) in Technology of Electrochemical Processes and Corrosion Protection. His thesis, titled “Electrochemical Preparation of Nanosized Pt/C Catalysts for Fuel Cells with Proton Exchange Polymer Membrane,” was supervised by Prof. Dr. Nina V. Smirnova. Dr. [Name] has participated in prestigious international research fellowships, including the Institute of Problems of Chemical Physics (2011), TU Dresden (DAAD Scholarship, 2012), the European Synchrotron Radiation Facility (2012), and NUST β€œMISIS” (2013) . πŸŒπŸ”¬

Experience

Prof. Dr. Alexandra Kuriganova is a distinguished researcher in electrochemical materials and nanotechnology. She began her academic career as an Assistant Professor at South Russian State Technical University (2008-2013) πŸŽ“, where she conducted research and taught chemical engineering courses. Since 2013, she has been an Associate Professor at Platov South Russian State Polytechnic University πŸ›οΈ, leading academic and research initiatives. As a Senior Research Fellow at the Research Institute of Nanotechnologies & Novel Materials (2014-Present) πŸ§ͺ, she spearheads advancements in nanomaterials for energy storage and catalysis. Her international collaborations include studies on diesel oxidation catalysts πŸš—, Li-ion battery anodes πŸ”‹, Pt nanocrystal compressibility πŸ—οΈ, and nanoparticle growth πŸ”¬.

Research Interest

Prof. Dr. Alexandra Kuriganova specializes in nanodispersed metal and metal oxide materials for electrochemical applications βš‘πŸ”¬, including proton exchange membrane fuel cells (PEMFCs), supercapacitors, and Li-ion batteries. Her research explores electrochemical oxidation and dispersion for nanoparticle synthesis. Collaborating with top institutions worldwide 🌍, she has worked on Pt/C catalysts for PEMFCs, Pt/γ–Alβ‚‚O₃ diesel oxidation catalysts, and SnOβ‚‚ nanoparticles for Li-ion batteries. She has partnered with scientists from Russia πŸ‡·πŸ‡Ί, Germany πŸ‡©πŸ‡ͺ, France πŸ‡«πŸ‡·, and beyond, leading to impactful joint publications πŸ“š. Her work advances energy storage and catalysis, driving innovation in electrochemical technologies. πŸš€πŸ”‹

Research Focus

Prof. Dr. Alexandra Kuriganova’s research focuses on the synthesis and application of nanodispersed metals and metal oxides for electrochemical energy storage and catalysis βš‘πŸ”‹. She has significantly contributed to fuel cell technology by developing high-performance Pt/C catalysts for proton exchange membrane fuel cells (PEMFCs) πŸš€. Her work in supercapacitors and batteries includes tin oxide-based anodes for Li-ion batteries and electrocatalytic materials for energy storage βš‘πŸ”‹. She pioneers pulse electrolysis techniques for synthesizing bimetallic electrocatalysts using electrochemical dispersion 🎯. Additionally, her studies on Pt/γ–Alβ‚‚O₃ catalysts for diesel oxidation involve collaborations with global research institutions 🌍. Her interdisciplinary expertise in electrochemistry, nanotechnology, and materials science has led to groundbreaking discoveries and high-impact publications πŸ“š.

Publication Top Notes

1️⃣ New Insights into Controlling the Functional Properties of Tin Oxide-Based Materials πŸ§ͺ
2️⃣ Theoretical and Technological Fundamentals of Pulse Electrolysis for Electro- & Catalytically Active Materials ⚑
3️⃣ Electrochemistry of Pt and Pd Under Pulse Electrolysis Conditions πŸ—οΈ
4️⃣ Pt Catalysts Prepared via Top-down Electrochemical Approach: Synthesis & Support Effects πŸ”¬
5️⃣ Tungsten Oxide Nanopowders: Pulse AC Electrosynthesis & Photocatalytic Performance πŸ’‘
6️⃣ Fabrication of Nano-Inβ‚‚O₃ Phase Junction for Enhanced Photoelectrochemical Performance 🌱
7️⃣ Pulse Electrolysis Technique for Preparation of Bimetal Tin-Containing Electrocatalytic Materials βš™οΈ
8️⃣ Investigation of Ambient Temperature Influence on PEMFC Characteristics: From Single Cell to Stack πŸ”‹
9️⃣ Electrochemical Dispersion Technique for Sn-Doped Pt Particles as Electrocatalysts πŸš€
πŸ”Ÿ Comparison of Bottom-Up & Top-Down Approaches to Pt/C Electrocatalyst Synthesis 🏭

 

 

Weiquan Cai | Chemistry and Materials Science | Best Researcher Award

Weiquan Cai | Chemistry and Materials Science | Best Researcher Award

Prof Weiquan Cai, School of Chemistry and Chemical Engineering, Guangzhou University, China

Prof. Weiquan Cai: A Leading Contender for the Best Researcher Award.

Publication profile

google scholar

Academic and Professional Background

Prof. Weiquan Cai is a Distinguished Professor and Academic Leader at Guangzhou University, holding this position since 2017. He earned his BS in Chemical Technology from Wuhan Institute of Technology in 1995, an MS in Environmental Engineering from China University of Petroleum in 2002, and a PhD in Chemical Technology from the Institute of Process Engineering, Chinese Academy of Sciences in 2005. His postdoctoral research focused on Material Chemistry and Physics at Wuhan University of Technology, and he was a visiting scholar at Kent State University (2009-2010). In 2012, he joined Wuhan University of Technology as a professor in the School of Chemical Engineering.

Research and Innovations

Prof. Cai has led over 30 research projects funded by various government bodies and enterprises, including five from the National Natural Science Foundation of China and four from Guangdong Provincial Science and Technology Plan. His research includes notable industrial applications, such as a high-efficiency grease cleaning agent. He has published over 200 papers, with around 165 indexed by SCI, including nine Highly Cited Papers. His work has earned significant citations and includes over 115 national invention patents, with 60 granted. His research has led to advancements in materials and chemical engineering, evidenced by his recent publications in prominent journals like Fuel and Chemical Engineering Journal.

Books Published (ISBN)

Prof. Cai co-authored “Chemical Engineering Principles Experiment” (ISBN: 978-7-5629-3466-0), published by Wuhan University of Technology Press in 2011, alongside Guangxu Zhang and Xuanjun Wu.

Patents Published/Under Process

He holds more than 115 national invention patents, with 60 authorized, including one USA invention patent.

Recent Journal Publications

Sorptive-enhanced biogas steam reforming over Pb-modified Ni-CaO bifunctional catalysts (Fuel, 2024). Immobilization of Ni on MOF-derived CeO2 for low-temperature dry reforming of methane (Fuel, 2024). Preparation of poly (vinyl alcohol)/polydopamine/tannin acid coupling of heterogeneous advanced oxidation processes and photocatalysis (Chemical Engineering Journal, 2024).

Publication top notes

Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and …

Synthesis of hierarchical Ni (OH) 2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water

Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties

Template-free synthesis of hierarchical spindle-like Ξ³-Al 2 O 3 materials and their adsorption affinity towards organic and inorganic pollutants in water

Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO2Β Reduction to HCOOH

Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment

Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull

Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53 (Fe) under visible light irradiation

Preparation and properties of quaternary ammonium chitosan-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogels