Sumana Ghosh (Das) | Chemistry and Materials Science | Best Researcher Award

Sumana Ghosh (Das) | Chemistry and Materials Science | Best Researcher Award

Dr Sumana Ghosh Das, CSIR-CGCRI, India

Dr. Sumana Ghosh (Das) is a Senior Principal Scientist at CSIR-CGCRI, specializing in bio-ceramics and coatings 🎓🔬. She earned her B.E. from IIEST Shibpur, M.Tech from IIT Kharagpur, and Ph.D. from Jadavpur University. Her groundbreaking research focuses on thermal barrier coatings and microwave processing 📡. With over two decades at CGCRI, she has contributed to numerous high-impact projects and publications 📚. Dr. Ghosh has received prestigious awards like the Bharat Jyoti Award 🏆 and the Lifetime Achievement Award from Marquis Who’s Who 🌍. She actively mentors Ph.D. students and reviews national and international research proposals 👩‍🏫.

Publication Profile

Scopus

Educational Attainments 

Dr. Sumana Ghosh (Das) is a distinguished metallurgical engineer 🔧 with a passion for materials science. She earned her B.E. in Metallurgical Engineering from IIEST, Shibpur in 1998 🎓, followed by an M.Tech. in Materials Science from IIT Kharagpur in 2000 🏗️. In 2010, she completed her Ph.D. at Jadavpur University 🎓, focusing on the structure-property relationship in thermal barrier coatings 🔬. Dr. Ghosh’s academic journey reflects her dedication to advancing material technologies, contributing to innovations in engineering applications. Her expertise bridges the gap between research and practical solutions in the field of metallurgical and materials science.

Professional Experience 

Dr. Sumana Ghosh (Das) is a Senior Principal Scientist at CSIR-CGCRI, Kolkata 🌟. She began her career as a Junior Scientist in 2001 and steadily progressed to Scientist (2006-2011) 🧪, Senior Scientist (2011-2015) 🔬, and Principal Scientist (2015-2020) 🏅. With over two decades of experience, Dr. Ghosh has made significant contributions to the fields of bio-ceramics and coatings 💎. Her expertise continues to drive innovation and advanced research at CSIR-CGCRI, shaping the future of material science in India 🚀.

Scientific Contributions 

Dr. Ghosh is a leading researcher in materials science, with over 14 high-impact publications 📚. Her innovative work explores novel coating methods, microwave sintering, and high-temperature glass-ceramic coatings 🔬. These advancements have paved the way for breakthroughs in aerospace ✈️ and biomedical applications 🏥. Dr. Ghosh’s contributions enhance material durability and performance under extreme conditions, making her a key figure in cutting-edge technology development. Her research bridges fundamental science and real-world applications, driving innovation and expanding the possibilities of modern engineering 🌐.

Research Projects 

She has led and contributed to numerous prestigious projects funded by DRDO, CSIR, ARDB, and DST 🔬💼. Her expertise shines through her leadership in groundbreaking initiatives like microwave processing of ceramic composites ⚙️🔥. This innovative work has paved the way for advancements in high-temperature resistant coatings, crucial for aerospace and defense applications ✈️🛡️. Her dedication to cutting-edge research and collaboration with top scientific organizations highlights her commitment to technological progress and material science excellence 🚀📚. Through these contributions, she continues to drive forward solutions for complex engineering challenges.

Awards and Recognitions 

Dr. Sumana Ghosh (Das) is a distinguished materials scientist 🏅 with numerous accolades. She secured 3rd place 🥉 for Best Poster Paper (2009) by The Indian Ceramic Society & NIIST, CSIR. Honored in Marquis Who’s Who in Science and Engineering 📚 (2011-2020), she received their Lifetime Achievement Award in 2019. A reviewer for NIT Rourkela and CSIR-HRDG, she’s won the Bharat Jyoti Award 🏆, Bharat Excellence Award 🥇, and the Best Citizens of India Award. As an invited speaker globally 🌏, she continues to shape the field of materials science, particularly glass and ceramics.

Leadership and Engagements 

Dr. Ghosh plays a vital role in academic administration 🏛️, serving on Ph.D. selection committees 🎓, project staff recruitment panels 👩‍💻, and internal scientist assessment boards 🧑‍🔬. Her dedication extends to professional societies as a life member of the Indian Ceramic Society 🔬, reflecting her commitment to the field. Dr. Ghosh also contributes to scholarly advancement by regularly reviewing articles for prestigious journals 📚. Her active involvement in these areas highlights her leadership, expertise, and dedication to fostering academic excellence and scientific progress.

Research Focus

Dr. Sumana Ghosh’s research focuses on developing advanced thermal barrier coatings (TBCs) for gas turbine applications 🔥🔧. Her work emphasizes mitigating thermal growth oxidation (TGO) and enhancing high-temperature oxidation and corrosion resistance using novel glass-ceramic and composite materials 🧪🛡️. She explores functionally graded coatings and oxide-based anti-corrosion composites to improve durability and efficiency in harsh environments 🏭💡. Dr. Ghosh’s contributions include studies on microstructure evolution, hot corrosion behavior, and surface protection techniques, paving the way for more resilient and long-lasting turbine components ⚙️✨. Her innovative approaches hold significant potential for advancing materials science and energy systems 🚀.

Publication top notes

Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications

Novel oxide based anti-corrosion composite coating for gas turbines

High-temperature oxidation-resistant glass–ceramic/YSZ composite coatings for gas turbine engine applications

Hot Corrosion Behaviour of Three-Layered Functionally Graded Glass–ceramic–YSZ-based Thermal Barrier Coating System

Surface and interfacial microstructure evolution of isothermally oxidized thermal barrier coating system

Lin He | Chemistry and Materials Science | Best Researcher Award

Lin He |Chemistry and Materials Science | Best Researcher Award

Prof Lin He, Shihezi University, China

Prof. Lin He is a distinguished Organic Chemist, currently a Full Professor at Shihezi University, specializing in synthetic methodology and organocatalysis. He earned his Ph.D. in Organic Chemistry from the Chinese Academy of Sciences (2005-2008), and his M.S. and B.S. degrees from the University of Science and Technology of China and Qufu Normal University. He has been a visiting scholar at the University of Bristol (2017-2018). Prof. He has published numerous research articles on aryne reactions, multi-component reactions, and visible-light photochemistry, contributing significantly to the field of organic synthesis. 🧪🔬📚🌟

Publication Profile

Scopus

Education

Prof. Lin He has an extensive academic background in Organic Chemistry. He earned his Ph.D. in Organic Chemistry from the Institute of Chemistry, Chinese Academy of Sciences (2005-2008), after completing his M.S. in Organic Chemistry at the University of Science and Technology of China (2002-2005). Prior to that, he obtained his B.S. in Chemistry from Qufu Normal University (1998-2002). Prof. He’s research journey reflects a strong foundation in chemistry, contributing to advancements in the field. 🌟📚🧪

Experience

Prof. Lin He is a distinguished academic in Organic Chemistry. From October 2014, he has served as a Full Professor at the School of Chemistry and Chemical Engineering, Shihezi University. Previously, from 2008 to 2014, he was an Associate Professor at the same institution. In addition, he was a CSC Visiting Scholar at the University of Bristol from March 2017 to March 2018, further enhancing his expertise in the field. Prof. He’s contributions to organic chemistry research and education are widely recognized, and he continues to inspire both students and colleagues. 🔬📚🌍

Research Interests

Prof. Lin He is a leading expert in synthetic methodology, specializing in the development of efficient and innovative approaches for organic synthesis. His research focuses on organocatalysis, a powerful technique that uses small organic molecules to catalyze chemical reactions. This field has gained significant attention due to its sustainability, selectivity, and mild reaction conditions. Prof. He’s work has contributed to expanding the scope of organocatalysis, enabling the creation of complex molecules with precision and efficiency. His contributions have paved the way for greener and more sustainable chemical processes, with broad applications in pharmaceuticals and materials science. 🧪🔬🌿

Research Focus

Prof. Lin He focuses on advanced synthetic organic chemistry, with particular expertise in N-heterocyclic carbene (NHC)-catalyzed reactions. His research includes the development of novel catalytic systems for C–P coupling, sulfur and selenium chemistry, and asymmetric synthesis of complex molecules. Prof. He also explores photoinduced electron transfer in lignin model systems and the creation of functionalized sulfilimines and chiral amines. His work contributes significantly to sustainable chemical processes and materials science, particularly in the context of energy and environmental applications. Key topics include catalysis, photoinduced reactions, and the synthesis of bioactive compounds. 🧪🔬⚗️🌱

Publication Top Notes

Photoinduced Single Electron Reduction of the 4-O-5 Linkage in Lignin Models for C-P Coupling Catalyzed by Bifunctional N-Heterocyclic Carbenes

Trideuteromethylthiolation through Reaction of Arynes, S-Methyl-d3 Sulfonothioate with Sulfonamides or Amides: Access to Trideuteromethylated Sulfilimines

N-Heterocyclic Carbene (NHC)-Catalyzed [3+2] Cycloaddition to Highly Diastereoselective Synthesis of Spirooxindole Dihydrofuran Fused Pyrazolone Compounds 

Asymmetric Synthesis of Tertiary α-Hydroxylation-Cyclopentanones via Synergetic Catalysis of Chiral-at-Metal Rhodium(III) Complexes/Pyrrolidine

Chalcogen bonding enabled photosynthesis of aryl selenides from aryl sulfonium salts

SuFEx Reactions of Sulfonyl Fluorides, Fluorosulfates, and Sulfamoyl Fluorides Catalyzed by N-Heterocyclic Carbenes

Divergent synthesis of chiral amines via Ni-catalyzed chemo- and enantioselective hydrogenation of alkynone imines

Conclusion

Prof. Lin He’s distinguished academic career and impactful research in Organic Chemistry make him a strong contender for the Best Researcher Award. His groundbreaking work in synthetic methodologies and organocatalysis has advanced the field, bringing innovative solutions to chemical research. With numerous influential publications and continuous contributions, Prof. He has significantly impacted the scientific community. His excellence in both research and teaching has earned him recognition as a leader in his field. His dedication to advancing knowledge in Organic Chemistry highlights his deserving candidacy for this prestigious award. 🏅🔬📚🧪

 

 

Mehdi SALEM | Chemistry and Materials Science | Best Researcher Award

Mehdi SALEM | Chemistry and Materials Science | Best Researcher Award

Dr Mehdi SALEM, IMT Mines Albi, France

Dr. Mehdi Salem appears to be an excellent candidate for the Best Researcher Award due to his significant contributions in materials science and mechanical engineering, specifically in areas like thermal fatigue, high-temperature corrosion, and additive manufacturing. Below are key factors supporting his suitability:

Publication profile

google scholar

Strong Academic Background

Dr. Salem holds a Doctorate in Mechanical Engineering (2009) from Université Paul Sabatier de Toulouse, with prior degrees in materials science and general engineering. His academic foundation is rooted in prestigious institutions, reflecting his depth in research capabilities.

Professional Experience

With over a decade of experience as a research engineer at Armines – IMT Mines Albi-Carmaux and extensive post-doctoral work, Dr. Salem’s professional career focuses on high-impact research in material fatigue, metal forming processes, and additive manufacturing. His roles as a lecturer further demonstrate his academic leadership.

Expertise and Technical Contributions

His expertise spans advanced topics such as thermal fatigue, corrosion, residual stress evaluation, and additive manufacturing. His technical skills in simulation (e.g., MEF), microstructural analysis, and materials testing position him as a leading researcher in his field.

Publications and Impact

Dr. Salem’s publications, such as his work on thermal fatigue analysis and residual stresses in selective laser melting, have made a significant contribution to mechanical engineering and materials science, with citations demonstrating the relevance of his research. His published papers in top-tier journals like International Journal of Fatigue and Additive Manufacturing have garnered considerable citations, reflecting the impact of his research on both academic and industrial applications.

Multidisciplinary Collaboration

Collaborating with both academic and industrial entities, his research has addressed real-world challenges, such as improving machining quality and enhancing the durability of automotive components. His work on the effect of doum palm fibers and aluminizing on thermal fatigue demonstrates innovative problem-solving in diverse materials.

Research focus

M. Salem’s research primarily focuses on thermal fatigue, additive manufacturing, and composite materials. His work spans analyzing thermal fatigue in automotive diesel pistons and hot work tool steels to improving additive manufacturing processes like selective laser melting and cold metal transfer. He also explores the mechanical and thermal properties of materials, including aluminum alloys and gypsum mortars reinforced with natural fibers. Another key aspect of his research involves developing innovative tools to enhance machining quality and reduce harmful particulate dispersion in composite materials. 🔧🛠️🔥🌡️📊

Conclusion

Dr. Salem’s deep expertise, demonstrated impact through highly cited publications, and his significant technical achievements in thermal fatigue, additive manufacturing, and residual stress analysis make him a standout candidate for the Best Researcher Award. His ongoing contributions to both academic research and industrial applications exemplify his leadership in the field of materials science.

Kangchun Lee | Chemistry and Materials Science | Best Researcher Award

Kangchun Lee | Chemistry and Materials Science | Best Researcher Award

Prof Kangchun Lee, KyonggiUniversity, South Korea

Based on the information provided, Prof. Kangchun Lee appears to be a strong candidate for the Best Researcher Award due to his significant achievements and contributions in his field. Here’s a summary of why he stands out.

Publication profile

google scholar

Education and Professional Background

Prof. Kangchun Lee holds a Ph.D. in Energy Engineering from Hanyang University (2020) and a B.S. in Materials Science and Engineering from the same institution (2014). His career began as a Staff Engineer at Samsung Electronics’ Semiconductor R&D Center, where he worked from September 2020 to February 2023. He is currently an Assistant Professor in the Department of Electronic Engineering at Kyonggi University, starting in March 2023. His experience includes comprehensive work on GAA-based semiconductor processes and advanced process development for sub-3nm and sub-2nm semiconductor integration.

Academic and Professional Contributions

Prof. Lee has actively participated in various academic committees and roles, including the International Conference on Planarization/CMP Technology (ICPT) program committee, Korea CMP User Group Meeting (CMPUGM) committee, and as a Topical Advisory Panel Member for Applied Sciences. His involvement in the Early Career Scholars Program and as a Guest Editor for Applied Sciences further highlights his engagement with the academic community.

Awards and Recognition

Prof. Lee has received several prestigious awards, including the Best Paper Award in 2022 from Samsung Electronics and scholarship awards from the Korea Semiconductor Industry Association (2019) and Korea Ceramic Society (2013). These accolades underscore his impactful research and recognition within the industry.

Publications and Research Impact

Prof. Lee’s research has been widely published, with notable contributions to journals such as ECS Journal of Solid State Science and Technology, Materials Science in Semiconductor Processing, and Applied Surface Science. His work covers critical topics such as CMP performance enhancement, advanced CMP slurry compositions, and eco-friendly chemical mechanical planarization techniques. His research is highly cited, reflecting its significance and influence in the field.

Summary

Prof. Kangchun Lee’s educational background, professional experience, active academic involvement, and prestigious awards make him a compelling candidate for the Best Researcher Award. His extensive research output and contributions to semiconductor technology and materials science demonstrate his excellence and impact in his field.

Publication top notes

Tailored electronic structure of Ir in high entropy alloy for highly active and durable bi‐functional electrocatalyst for water splitting under acidic environment

Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption

Fenton-like reaction between copper ions and hydrogen peroxide for high removal rate of tungsten in chemical mechanical planarization

Ce3+-enriched core–shell ceria nanoparticles for silicate adsorption

Highly reversible cycling with Dendrite-Free lithium deposition enabled by robust SEI layer with low charge transfer activation energy

Galvanic corrosion inhibition from aspect of bonding orbital theory in Cu/Ru barrier CMP

Preparation and characterization of slurry for CMP

Synergistic Effect of Mixed Particle Size on W CMP Process: Optimization Using Experimental Design

Optimizing a blend of a mixture slurry in chemical mechanical planarization for advanced semiconductor manufacturing using a posterior preference articulation approach to dual …

Suppression of Dissolution Rate via Coordination Complex in Tungsten Chemical Mechanical Planarization