Liu Xiaolu | Chemistry and Materials Science | Best Researcher Award

Liu Xiaolu | Chemistry and Materials Science | Best Researcher Award

Ms Liu Xiaolu, North China Electric Power University, China

🎓 Ms. Liu Xiaolu is a dedicated researcher pursuing her Ph.D. at North China Electric Power University (2022–present), after earning her Master’s (2019–2022) and Bachelor’s (2015–2019) degrees from the same university and Yanshan University, respectively. 🧪 Her research focuses on functional porous nanomaterials and radionuclide separation. 🌍 She has authored 17 papers in prestigious journals like Nat. Commun., Adv. Sci., and Langmuir. 📚 Liu actively participates in global conferences, including ACS Spring 2024. Her groundbreaking work on MOFs, COFs, and electrocatalysis is shaping innovations in energy and environmental applications. ⚡🌱

Publication Profile

Scopus

Education

Ms. Liu Xiaolu 🎓 began her academic journey at Yanshan University, earning her Bachelor’s degree between September 2015 and June 2019 📚. Driven by a passion for further knowledge, she pursued her Master’s degree at North China Electric Power University from September 2019 to June 2022 ⚡. Continuing her academic excellence, she is currently a dedicated Doctoral candidate at the same university since September 2022 📝. Her commitment to education and research showcases her strong determination and academic growth 🌟.

Research Achievement

Ms. Liu Xiaolu is a prolific researcher with 17 first-author publications in prestigious journals like Nature Communications 🌍, Advanced Science 🚀, Langmuir 🌊, and Innovation 💡. Her representative works include papers in Nat. Commun. (2024, 15, 7736), Adv. Sci. (2022, 9, 2201735; 2023, 10, 2303536), J. Mater. Chem. A (2021, 9, 21051-6), and Crit. Rev. Env. Sci. Tec. (2021, 51, 751-790; 2023, 53, 1289-1309) 📚. She has significantly contributed to Environmental Pollution 🌿, Sci. China. Chem. 🧪, and EEH 🔬. Her research showcases innovation and scientific excellence, reflecting her dedication to impactful discoveries. ✨

Academic Conference

Ms. Liu Xiaolu has actively participated in several prestigious conferences, showcasing her expertise in environmental and radiochemistry. 🌍 She attended the 1st Conference of Carbon Research in Guangzhou, China (March 24–26, 2023) and the 12th National Conference on Environmental Chemistry in Wuhan, China (November 17–21, 2023). 🧪 Additionally, she contributed to the Conference of National Radiochemistry Development Strategy and Academic Exchange in Nanchang (October 20–23, 2023). ⚛️ Expanding her global reach, Ms. Liu joined the ACS Spring 2024 Meeting held online from New Orleans (March 17–21, 2024), reflecting her dedication to scientific growth and collaboration. 🌐

Research Interest

Ms. Liu Xiaolu specializes in the design and synthesis of functional porous nanomaterials 🧪, focusing on creating advanced materials with unique structures and properties. Her research also delves into the separation and extraction of radionuclides ⚛️, aiming to enhance techniques for environmental protection and nuclear waste management 🌍. By combining innovative nanotechnology with efficient separation methods, she contributes to sustainable solutions in energy and environmental sciences 💡. Her work bridges the gap between material science and nuclear chemistry, paving the way for safer and cleaner technologies in the future 🚀.

Research Focus

Ms. Liu Xiaolu’s research focuses on advanced materials like Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), and their derivatives for energy and environmental applications 🌱⚡. Her work explores innovative approaches to electrocatalytic CO₂ reduction, enhancing photocatalytic performance, and piezocatalytic techniques for pollutant degradation 🌍🔬. By modulating the coordination environment of atomically dispersed metals, she aims to improve efficiency in low-overpotential and industrial-scale processes ⚡⚗️. Her research contributes to sustainable solutions for clean energy and environmental remediation, addressing global challenges in pollution control and renewable energy 🌊🌞.

Publication Top Notes

Emerging MOFs, COFs, and their derivatives for energy and environmental applications

Modulating the Coordination Environment of Atomically Dispersed Nickel for Efficient Electrocatalytic CO2 Reduction at Low Overpotentials and Industrial Current Densities

Rational Design of 3D Space Connected Donor–Acceptor System in Covalent Organic Frameworks for Enhanced Photocatalytic Performance

Piezocatalytic techniques and materials for degradation of organic pollutants from aqueous solution

Conclusion

Ms. Liu Xiaolu is a distinguished researcher known for her outstanding publication record 📚, innovative research in environmental and energy applications 🌍⚡, and active participation in international conferences 🌐🎤. Her groundbreaking work contributes significantly to sustainable solutions, addressing global environmental challenges with creativity and expertise 🌱🔬. Ms. Liu’s dedication to advancing knowledge and her impactful presence in the research community make her a highly suitable candidate for the Best Researcher Award 🏆🎓. Her passion for scientific excellence and commitment to global sustainability continue to inspire peers and future researchers alike 🌟💡.

 

 

 

Anna Nikitjuka | Chemistry and Materials Science | Best Researcher Award

Anna Nikitjuka | Chemistry and Materials Science | Best Researcher Award

Dr Anna Nikitjuka, Latvian Institute of Organic Synthesis, Latvia

Dr. Anna Nikitjuka, she appears to be a strong candidate for the Research for Best Researcher Award. Here’s an analysis of her qualifications, work experience, projects, and publications, concluding with a summary of her suitability for the award.

Publication profile

Orcid

Education

Dr. Nikitjuka holds a Doctorate in Chemical Science from the University of Latvia, where she worked under the supervision of Prof. Dr. Aigars Jirgensons. She also earned a Master of Natural Sciences in Chemistry from the same institution, further demonstrating her extensive background in chemistry.

Work Experience

Dr. Nikitjuka has an impressive track record of research experience, including her current position as a Principal Researcher at the Latvian Institute of Organic Synthesis. Her previous roles include a Researcher and Research Assistant at the same institute, showcasing a continuous commitment to advancing chemical research. She has also engaged in multiple postdoctoral projects across prominent European universities, enhancing her international exposure and collaboration experience.

Reviewer and Editorial Experience

Dr. Nikitjuka has served as a reviewer for esteemed journals such as Medicinal Chemistry Research and has taken on editorial roles, including co-guest editor for a special issue on Anti-Cancer Agents in Medicinal Chemistry. This involvement highlights her active engagement in the scientific community and her commitment to advancing research in medicinal chemistry.

Projects

Dr. Nikitjuka has led several significant research projects, such as the PostDoc grant and ISIDORA project, reflecting her leadership capabilities and expertise in the field. Her involvement in these projects indicates her ability to drive research initiatives successfully.

Publication top notes

Given Dr. Anna Nikitjuka’s robust educational background, extensive research experience, active involvement in the scientific community through editorial roles, and her impactful publications, she is indeed a suitable candidate for the Research for Best Researcher Award. Her commitment to advancing knowledge in chemistry and her leadership in significant projects demonstrate her potential to make substantial contributions to the field.

 

 

Weiquan Cai | Chemistry and Materials Science | Best Researcher Award

Weiquan Cai | Chemistry and Materials Science | Best Researcher Award

Prof Weiquan Cai, School of Chemistry and Chemical Engineering, Guangzhou University, China

Prof. Weiquan Cai: A Leading Contender for the Best Researcher Award.

Publication profile

google scholar

Academic and Professional Background

Prof. Weiquan Cai is a Distinguished Professor and Academic Leader at Guangzhou University, holding this position since 2017. He earned his BS in Chemical Technology from Wuhan Institute of Technology in 1995, an MS in Environmental Engineering from China University of Petroleum in 2002, and a PhD in Chemical Technology from the Institute of Process Engineering, Chinese Academy of Sciences in 2005. His postdoctoral research focused on Material Chemistry and Physics at Wuhan University of Technology, and he was a visiting scholar at Kent State University (2009-2010). In 2012, he joined Wuhan University of Technology as a professor in the School of Chemical Engineering.

Research and Innovations

Prof. Cai has led over 30 research projects funded by various government bodies and enterprises, including five from the National Natural Science Foundation of China and four from Guangdong Provincial Science and Technology Plan. His research includes notable industrial applications, such as a high-efficiency grease cleaning agent. He has published over 200 papers, with around 165 indexed by SCI, including nine Highly Cited Papers. His work has earned significant citations and includes over 115 national invention patents, with 60 granted. His research has led to advancements in materials and chemical engineering, evidenced by his recent publications in prominent journals like Fuel and Chemical Engineering Journal.

Books Published (ISBN)

Prof. Cai co-authored “Chemical Engineering Principles Experiment” (ISBN: 978-7-5629-3466-0), published by Wuhan University of Technology Press in 2011, alongside Guangxu Zhang and Xuanjun Wu.

Patents Published/Under Process

He holds more than 115 national invention patents, with 60 authorized, including one USA invention patent.

Recent Journal Publications

Sorptive-enhanced biogas steam reforming over Pb-modified Ni-CaO bifunctional catalysts (Fuel, 2024). Immobilization of Ni on MOF-derived CeO2 for low-temperature dry reforming of methane (Fuel, 2024). Preparation of poly (vinyl alcohol)/polydopamine/tannin acid coupling of heterogeneous advanced oxidation processes and photocatalysis (Chemical Engineering Journal, 2024).

Publication top notes

Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and …

Synthesis of hierarchical Ni (OH) 2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water

Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties

Template-free synthesis of hierarchical spindle-like γ-Al 2 O 3 materials and their adsorption affinity towards organic and inorganic pollutants in water

Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO2 Reduction to HCOOH

Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment

Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull

Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53 (Fe) under visible light irradiation

Preparation and properties of quaternary ammonium chitosan-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogels

 

Tamara Erceg | Chemistry and Materials Science | Hypothesis Achievement Award

Tamara Erceg | Chemistry and Materials Science | Hypothesis Achievement Award

Dr Tamara Erceg, Faculty of Technology Novi Sad, Serbia

Based on Dr. Tamara Erceg’s extensive experience, achievements, and contributions to the field of polymer science, particularly in green chemistry and biodegradable materials, she appears to be a suitable candidate for the Hypothesis Achievement Award. Here are the key points supporting her candidacy.

Publication profile

Orcid

  • Academic Excellence: Dr. Erceg completed her Ph.D. in Polymer Science with the highest average note of 10.00. Her research focuses on the structuring of polymer networks, highlighting her expertise and innovation in the field.
  • Professional Experience: She has been involved in educational and pedagogical work at the Faculty of Technology Novi Sad since 2016, and has been a research associate there, demonstrating her commitment to advancing science and education.
  • Research Contributions: Dr. Erceg has numerous publications in high-impact journals (Q1) covering a wide range of topics, including biodegradable packaging, polymer nanocomposites, and sustainable materials. Her work on active coatings for food packaging and the development of biodegradable cellulose acetate-based films showcases her dedication to solving real-world problems through scientific research.
  • Leadership and Collaboration: She has held significant roles in various projects, including being a project manager for international collaborations and projects funded by the Ministry of Science, Innovation, and Technological Development of the Republic of Serbia. Her involvement in multidisciplinary projects and international conferences highlights her leadership and collaborative skills.
  • Impact and Innovation: Dr. Erceg’s work on biodegradable materials and green chemistry principles aligns with current global priorities on sustainability and environmental protection. Her contributions to the development of eco-friendly packaging solutions and her research on the optimization of biodegradable bags underscore her innovative approach to addressing pressing environmental issues.
  • Research focus

  • Tamara Erceg’s research focuses on the development and characterization of sustainable, eco-friendly materials and active packaging solutions. Her work includes studies on pullulan-based edible coatings to extend cheese shelf life, antioxidant recovery using cloud point extraction, hydrogels, and biodegradable cellulose acetate films. She explores the incorporation of essential oils for antimicrobial packaging and analyzes the thermal stability of bio-based urea-formaldehyde resins. Erceg’s contributions aim to improve food preservation, enhance material properties, and reduce environmental impact through innovative biopolymer applications. 🌿🧀🛡️📦🔬
  • Publication top notes

  • Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life

  • Updating the Status quo on the Eco-Friendly Approach for Antioxidants Recovered from Plant Matrices Using Cloud Point Extraction

  • Architecture of Hydrogels

  • Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers