Qiong Ye | Energy Storage | Best Researcher Award

Dr. Qiong Ye | Energy Storage | Best Researcher Award  

Dr. Qiong Ye | Energy Storage | Postdoctoral Researcher at CY Cergy Paris University | France

Dr. Qiong Ye is an accomplished materials chemist recognized for her extensive research in inorganic chemistry, phase change materials, and energy storage technologies. Her scientific journey demonstrates a blend of theoretical insight and experimental precision in the development of advanced functional materials for sustainable energy applications. Dr. Ye earned her Ph.D. in Inorganic Chemistry from Le Mans Université, France, where she focused on the synthesis, crystallography, and thermodynamic behavior of complex oxide systems. She also completed her Master’s degree in the same institution, building a strong foundation in materials chemistry and thermodynamic studies. Currently, Dr. Qiong Ye serves as a Postdoctoral Researcher at CY Cergy Paris Université, France, where she investigates phase change materials and ionic conductors for thermal management and energy conversion systems. Her professional experience includes prior administrative leadership in Guangdong Meili Matériaux de Construction Ltd., China, where she coordinated R&D projects and material manufacturing processes before transitioning fully into academic research. Dr. Ye’s research interests encompass phase diagram analysis, solid-state chemistry, ionic conductivity, and numerical simulation of energy materials. She is particularly focused on the synthesis and structural characterization of oxide systems that enhance the performance and efficiency of energy storage and conversion devices. Her research skills include solid-state synthesis, X-ray and electron diffraction, impedance spectroscopy, thermal analysis, and computational modeling, complemented by proficiency in scientific software such as HighScore, FullProf, Jana, and Vesta. Dr. Ye’s interdisciplinary expertise bridges chemistry, physics, and materials engineering, contributing to several peer-reviewed publications in reputable journals such as Journal of Solid State Chemistry, Energy and Buildings, and The European Physical Journal Plus. Her works are indexed in Scopus and recognized for their contributions to advancing the understanding of material behavior under thermal and structural transitions. She has been involved in international collaborations promoting energy-efficient materials and sustainable technologies while demonstrating leadership in laboratory management and mentoring young researchers. Dr. Qiong Ye’s career reflects excellence, innovation, and dedication to advancing global energy materials research. Her achievements and continuous contributions to the scientific community make her a deserving candidate for academic recognition and future leadership in the field of materials chemistry.

Profile: ORCID

Featured Publications

Ye, Q. (2025). Experimental and numerical simulation study on the thermal performance of building envelope structures incorporating the solid–solid phase change material. Energy and Buildings. Citations: 12

Ye, Q. (2023). Phase diagram studies on ternary La₂O₃–MoO₃–CaO system. Journal of Solid State Chemistry. Citations: 8

Ye, Q. (2023). Phase diagram studies on ternary La₂O₃–WO₃–CaO system. Journal of Solid State Chemistry. Citations: 7

Ye, Q. (2022). You certainly know the second law of thermodynamics, do you know its connection to other laws of physics and chemistry? The European Physical Journal Plus. Citations: 15

Ye, Q. (2022). Partial re-investigation of the ternary diagram La₂O₃–Nb₂O₅–CaO, synthesis and characterization of the Ca₂La₃Nb₃O₁₄ and Ca₈La₈Nb₁₄.₄□₁.₆O₅₆ compounds. Journal of Solid State Chemistry. Citations: 10

Ye, Q. (2022). Cation-deficient Ca-doping lanthanum tungstate Ca₂.₀₆La₂.₆₁□₀.₃₃W₂O₁₂: Structure and transport property study. Journal of Solid State Chemistry. Citations: 9

Ye, Q. (2021). Investigation of phase change behavior in lanthanum-based oxide systems for energy storage applications. Materials Chemistry and Physics. Citations: 6

Jialin Li | Environmental Science | Best Researcher Award

Mr. Jialin Li | Environmental Science | Best Researcher Award

Doctor | Fudan university | China

Mr. Jialin Li is an accomplished researcher and Doctor at Fudan University, specializing in the preparation, functionalization, and application of advanced carbon-based porous materials for hydrogen storage, energy storage, and carbon dioxide capture. His educational background includes a master’s and doctorate in chemical engineering and materials science, where his primary focus was on nano-pore interface micro-environment regulation, design of multi-level nano-pore structures, and surface chemical modification of functional porous carbon fibers, carbon nanofibers, carbon aerogels, and porous carbon materials. Professionally, Mr. Jialin Li has been involved in significant research projects such as the coupling regulation of ultra-fine pores and hydrogen-bond microenvironment of polyacrylonitrile porous carbon nanofibers and investigating hydrogen adsorption mechanisms under confined conditions. He has made valuable contributions to material design strategies for energy applications and has played a key role in translating research findings into practical solutions, including patented technologies for preparing biomass textile fabric electrodes and pre-oxidized fiber fabric electrodes for flow batteries. As a dedicated researcher, Mr. Jialin Li has authored 14 documents, 124 citations, 6 h-index, which highlights his consistent research output and influence in the scientific community. His research has been widely published in reputable international journals, including the Chemical Engineering Journal, Journal of Colloid and Interface Science, ACS Nano, and International Journal of Hydrogen Energy, all indexed in Scopus and SCI, reflecting his ability to contribute to high-quality peer-reviewed publications. Mr. Jialin Li’s research interests include developing new porous carbon materials with ultra-high specific surface areas, improving gas adsorption performance at ambient conditions, and creating novel strategies for hydrogen and carbon dioxide storage. His research skills span advanced material synthesis, nano-structuring, micro-environment modulation, adsorption mechanism analysis, and interface chemical engineering, combined with hands-on experience in experimental design and data interpretation. He is also actively engaged in collaborative research that bridges chemistry, materials science, and environmental engineering, reflecting his interdisciplinary approach. Beyond his technical expertise, Mr. Jialin Li has contributed to mentoring younger researchers, fostering collaboration within his team, and supporting sustainable energy initiatives. His honors include recognition for scientific excellence through peer-reviewed publications, contribution to multiple high-impact studies, and the development of patented solutions that support energy sustainability.

Profile:  Scopus

Featured Publications

Li, J., Wang, Y., Zhang, Y., Zhao, W., Bao, W., Duan, Y., Yu, J., Zhu, B., & Qiao, K. (2024). Dipole-induced hydrogen bonds enhanced P/O co-doped Lyocell-based porous carbon fiber cloth for hydrogen storage under ambient pressure. Chemical Engineering Journal, 490, 151633. Citations: 35

Li, J., Duan, Y., Wang, Y., Zhang, Y., Zhou, J., Zhao, W., Yu, J., Zhu, B., & Qiao, K. (2024). Microenvironment modulation of interpenetrating-type hierarchical porous foam carbon by mild-homogeneous activation for H₂ storage and CO₂ capture under ambient pressure. Journal of Colloid and Interface Science, 675, 783–791. Citations: 28

Yu, J., Li, J., Chen, F., Chi, C., Zhang, W., Bao, W., Zhao, X., Zhu, B., & Qiao, K. (2024). Micro-nano scale synchronous “carving” of viscose fiber in activation process for atmospheric hydrogen storage. International Journal of Hydrogen Energy, 63, 411–417. Citations: 19

Zhang, Y., Zhu, B., Zhao, S., Zhao, W., Zhou, M., Sun, Y., Qiao, K., Liu, J., Zhou, J., & Li, J. (2024). In situ synthesis of self-assembly supramolecular crystal seeds within continuous carbon nanofibers for improved fiber graphitic structure. ACS Nano, 18(17), 11360–11374. Citations: 22

Bao, W., Yu, J., Chen, F., Du, H., Zhang, W., Yan, S., Lin, T., Li, J., Zhao, X., & Zhu, B. (2023). Controllability construction and structural regulation of metal-organic frameworks for hydrogen storage at ambient condition: A review. International Journal of Hydrogen Energy, 48(92), 36010–36034. Citations: 20

 

 

Zhongjun Yan | Energy and Sustainability | Best Researcher Award

Dr. Zhongjun Yan | Energy and Sustainability | Best Researcher Award

Dr. Zhongjun Yan | Energy and Sustainability | Associate Professor | Hunan University of Humanities Science and Technology | China

Dr. Zhongjun Yan is a distinguished scholar and lecturer at the School of Energy and Electrical Engineering, Hunan University of Humanities, Science and Technology. His professional journey reflects an enduring commitment to advancing renewable energy systems, sustainable heating and cooling technologies, and innovative energy storage methods. With strong academic credentials and a growing body of impactful research, Dr. Zhongjun Yan has established himself as an emerging leader in energy engineering. His work bridges theoretical modeling, computational methods, and experimental studies, enabling both scientific innovation and practical applications. He has become a significant contributor to the field of energy storage and solar-based systems, earning recognition through quality publications and participation in national-level and institutional research projects.

Professional Profile 

Education

Dr. Zhongjun Yan earned his doctoral degree in Heating, Ventilation, and Air-Conditioning Engineering from Hunan University, where his research was focused on the unconstrained melting process of phase change materials and the enhancement of heat transfer in thermal storage systems. His education combined advanced computational modeling, simulation techniques, and experimental validation, shaping a comprehensive expertise in sustainable energy. The doctoral thesis he completed contributed directly to the understanding of thermal storage efficiency and optimization methods in hot water tanks, providing new directions for future energy system development. This academic foundation has been critical to his current research on solar heating, air-conditioning, and the performance of energy storage units.

Experience

In his role as a lecturer, Dr. Zhongjun Yan has undertaken responsibilities that extend across teaching, mentoring, and research. His involvement in the Outstanding Youth Program of the Hunan Provincial Department of Education reflects his growing leadership in energy-related projects. He has contributed to the design and execution of research focusing on computational fluid dynamics (CFD), unconstrained melting phenomena, and heat transfer enhancement. His academic service also includes guiding students in advanced research methodologies and promoting innovation in energy storage and renewable systems. Moreover, Dr. Zhongjun Yan has presented his work at respected international conferences, where he has shared novel findings on the performance of phase change materials. Through these engagements, he has built professional connections that have broadened his collaborative network in the global energy research community.

Research Interest

Dr. Zhongjun Yan’s research interests lie at the intersection of renewable energy systems, thermal engineering, and phase change materials. His primary focus is on the heat transfer performance and optimization of phase change materials to improve the efficiency of thermal energy storage. He has dedicated extensive work to developing new approaches for enhancing the functionality of solar heating water systems and solar air-conditioning systems. Additionally, his research explores innovative modeling techniques to simulate unconstrained melting behaviors, allowing for more accurate predictions of system performance. His long-term vision is to create energy storage and distribution methods that can significantly reduce reliance on non-renewable resources and address the growing global demand for sustainable solutions.

Award

Dr. Zhongjun Yan has been actively involved in award-nominated research programs, most notably recognized through the Outstanding Youth Program by the Hunan Provincial Department of Education. This recognition highlights his innovative contributions to the study of energy storage systems and his leadership potential in advancing renewable technologies. His dedication to pushing the boundaries of engineering solutions in energy efficiency positions him as a strong candidate for international recognition and professional excellence awards.

Selected Publications

  • Performance enhancement of cylindrical latent heat storage units in hot water tanks via wavy design, Renewable Energy, published 2023, 55 citations.

  • A hybrid method for modeling the unconstrained melting of phase change material in hot water tanks, Energy and Buildings, published 2022, 38 citations.

  • Unconstrained melting of phase change material in cylindrical containers inside hot water tanks: Numerical investigation and effect of aspect ratios, Journal of Energy Storage, published 2022, 42 citations.

  • Impact of ultrasound on the melting process and heat transfer of phase change material, presented at International Conference on Applied Energy, published 2018, 27 citations.

Conclusion

Dr. Zhongjun Yan has made meaningful contributions to the field of renewable energy and thermal systems engineering. His work has advanced the knowledge of phase change materials, enhanced the performance of energy storage units, and contributed to the improvement of solar-based heating and cooling technologies. His consistent research output in respected journals, combined with his active role in academic projects and presentations at international conferences, highlights his professional dedication and scientific influence. Dr. Zhongjun Yan is not only a promising researcher but also a mentor and contributor to the broader academic and energy community. With a strong trajectory of impactful research and leadership potential, he represents the qualities of innovation, academic excellence, and societal contribution that make him highly deserving of recognition through this award nomination.