Maciej Szkoda | Engineering and Technology | Best Research Article Award

Assoc. Prof. Dr. Maciej Szkoda | Engineering and Technology | Best Research Article Award

Assoc. Prof. Dr. Maciej Szkoda | Engineering and Technology | Best Research Article Award | Head of the Department Transport | Cracow University of Technology | Poland

Assoc. Prof. Dr. Maciej Szkoda is a distinguished Polish rail transport engineer whose extensive academic, research, and professional accomplishments reflect deep expertise in rail vehicle construction, machine design, transport safety, RAMS evaluation, and Life Cycle Cost methodologies, positioning him as a leading figure in railway systems engineering. Assoc. Prof. Dr. Maciej Szkoda completed his Master of Science in Mechanical Engineering and later earned his Ph.D. in Technical Sciences from the Cracow University of Technology, specializing in rail vehicles, which laid the foundation for his progressive academic journey. His professional experience includes serving as University Professor, Manager of the Department of Rail Vehicles and Transport, Director of the Institute of Rail Vehicles, and Manager of multiple specialized departments and research laboratories, demonstrating exceptional leadership in academic administration and technical innovation. His research interests encompass rail vehicle reliability, availability, maintainability, and safety analysis, risk assessment in accordance with European railway regulations, technical–economic evaluations, and certification processes for locomotives and passenger rolling stock under TSI standards. He possesses strong research skills in RAMS modeling, failure analysis, compliance assessment, LCC modeling, safety case preparation, and approval procedures for new rail system designs, supported by over two hundred R&D projects conducted at national and international levels. Assoc. Prof. Dr. Maciej Szkoda has authored one hundred seventy-eight scientific publications disseminated through reputable journals, Scopus-indexed platforms, and major engineering conferences, with participation in more than two hundred fifty scientific events related to rail reliability, safety, and vehicle operation. His professional certifications include Internal Auditor for ISO 9001, Internal Auditor for ISO/IEC 17025 laboratory systems, and Quality Assistant certification, reflecting high technical competency and adherence to global quality standards. Throughout his career, he has contributed substantially to the advancement of railway engineering, supported student development, and provided expert analysis and evaluations for industry and governmental bodies. His achievements have positioned him as a respected academic and technical authority in railway systems, earning recognition through leadership appointments, project management roles, and extensive contributions to research-based decision-making. With a strong global engagement profile, Assoc. Prof. Dr. Maciej Szkoda continues to influence transport engineering advancements, promote safety-driven innovation, and strengthen interdisciplinary research, demonstrating excellence that underscores his suitability for prestigious academic and research honors.

Profile:  Scopus | ORCID 

Featured Publications

  1. Szkoda, M. (2025). Design and testing of the propulsion system of a prototype electric vehicle intended for people with disabilities. Transport Problems.

  2. Szkoda, M. (2024). A method for assessing the criticality of failures of railway vehicle components using the FMECA method. Transport Problems.

  3. Szkoda, M. (2024). Analysis of the impact of selected factors on damage to rolling bearings of rail vehicle wheelsets. Advances in Science and Technology Research Journal.

  4. Szkoda, M. (2023). Rail vehicle RAMS evaluation strategies for safety and performance optimization.

  5. Szkoda, M. (2022). Life cycle cost methodology in the assessment of modern rail transport systems.

  6. Szkoda, M. (2021). Risk assessment approaches for innovative railway vehicle design solutions.

  7. Szkoda, M. (2020). Technical and economic analyses supporting certification of locomotives and passenger rolling stock.

 

Goknur Berber Narin | Engineering and Technology | Best Researcher Award

Assist. Prof. Dr Goknur Berber Narin | Engineering and Technology | Best Researcher Award

Assist. Prof. Dr Goknur Berber Narin | Engineering and Technology | Best Researcher Award | Assistant Professor | Agrı Ibrahim Cecen University | Turkey 

Assist. Prof. Dr. Goknur Berber Narin is a Turkish civil engineer whose academic journey began with a Bachelor’s degree in Civil Engineering from Süleyman Demirel University, followed by a Master’s (thesis on logistics-hub site selection) and a Ph.D. (dissertation on modeling highway traffic noise) at Karadeniz Technical University. Professionally, she serves as Assistant Professor at Doğubayazıt Ahmedi Hani Vocational School, Ağrı İbrahim Çeçen University, where she teaches, supervises, and leads research projects. Her research interests center on transportation engineering, environmental noise modeling, logistics decision systems, and pavement performance, with a particular emphasis on how meteorological conditions, vehicle composition, and infrastructure types influence road noise and logistics hub siting. She is skilled in multi-criteria decision-making methods (AHP and Delphi), noise measurement and modeling, concrete durability assessment, and statistical and computational modeling. She has participated in several national research projects: for instance, she leads a TÜBİTAK-funded study on modeling road traffic noise under varying topography and meteorological conditions, and is a researcher on projects analyzing polypropylene fiber in concrete joints and ultrasonic testing of road concrete layers. Her work has been published in international refereed journals and presented at international conferences, demonstrating her active engagement in both theory and practice. Among her honors are the 2021 YTMK Master’s Thesis Award from the Turkish National Roads Committee and the EMAY Incentive Award from EMAY International Engineering & Consultancy, reflecting recognition for her academic excellence. She has also obtained multiple professional certifications, including training in traffic safety, geospatial data (GIS), environmental vibration measurement, damage detection in buildings, and advanced material testing, underscoring her commitment to both teaching and applied research. In conclusion, Assist. Prof. Dr. Goknur Berber Narin is a dedicated scholar whose rich educational background, project leadership, publication record, and cross-disciplinary skills make her a rising influence in sustainable infrastructure research and civil engineering education.

Profile: ORCID 

Featured Publications

  1. Berber, G., & Akpınar, M. V. (2024). Tırların Hıza Bağlı Olarak Oluşturduğu Çevresel Gürültünün İncelenmesi. International Journal of Advanced Natural Sciences and Engineering Researches.

  2. Berber, G., & Akpınar, M. V. (2024). Lojistik Merkez Yer Seçiminde Kullanılan AHP ve Delphi Yöntemlerinin Karşılaştırılması. International Journal of Advanced Natural Sciences and Engineering Researches.

  3. Kadıoğlu, T., Akpınar, M. V., & Berber, G. (2023). Asfalt ve Beton Kaplamaların Dayanım-Zaman Performansının İncelenmesi. Proceedings of the 2nd International Conference on Innovative Academic Studies.

  4. Berber, G., & Akpınar, M. V. (2024). Tırların Hıza Bağlı Olarak Oluşturduğu Çevresel Gürültünün İncelenmesi. 5th International Conference on Innovative Academic Studies.

  5. Berber, G., & Akpınar, M. V. (2024). Lojistik Merkez Yer Seçiminde Kullanılan AHP ve Delphi Yöntemlerinin Karşılaştırılması. 5th International Conference on Innovative Academic Studies.

  6. Kadıoğlu, T., Akpınar, M. V., & Berber, G. (2023). Investigation of the Performance of Polypropylene (PP) Fibers in Joints of Concrete Pavements. 3rd International Civil Engineering & Architecture Conference.

  7. Berber, G., Akpınar, M. V., & Kadıoğlu, T. (2023). Investigation of UK Noise Maps in the Highway Lgag Noise Parameter. 3rd International Civil Engineering & Architecture Conference.

 

Ibrahim Yahya Hakeem | Engineering and Technology | Best Researcher Award

Assoc. Prof. Dr. Ibrahim Yahya Hakeem | Engineering and Technology | Best Researcher Award

Assoc. Prof. Dr. Ibrahim Yahya Hakeem | Engineering and Technology | Best Researcher Award | Associate Professor | Najran University | Saudi Arabia 

Assoc. Prof. Dr. Ibrahim Yahya Hakeem is a highly accomplished scholar and Associate Professor of Structural Engineering, Building Materials, and Concrete Technology at Najran University, Saudi Arabia, where he has made significant contributions to civil and environmental engineering education and research. He holds a Ph.D. in Civil and Environmental Engineering from King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, where his doctoral research focused on developing sustainable and high-performance concrete materials. His academic foundation includes an M.Sc. in Civil and Environmental Engineering from KFUPM and a B.Sc. in Civil Engineering from Aden University, Yemen, both earned with high distinction and multiple honors. Over the years, Assoc. Prof. Dr. Ibrahim Yahya Hakeem has built an impressive professional career marked by excellence in teaching, research, and institutional leadership. He currently serves on several key committees at Najran University, including the Supreme Standing Committee for Renewing Institutional Accreditation, the Standing Committee for Program Accreditation, and the Executive Committee for Monitoring the Quality of Teaching and Learning. His professional expertise encompasses structural design, ultra-high-performance concrete (UHPC), sustainable construction materials, fiber-reinforced composites, and the use of industrial and agricultural waste for green concrete development. His active research projects—funded by national and institutional bodies—focus on eco-friendly, high-strength concrete formulations, advancing environmental sustainability in the construction sector. Assoc. Prof. Dr. Ibrahim Yahya Hakeem has demonstrated remarkable research skills in experimental design, finite element modeling, and materials characterization, complemented by his leadership as Principal Investigator in more than twenty funded projects. His strong publication record includes articles in high-impact journals indexed in Scopus, IEEE, and other prestigious databases, alongside patented innovations such as the “Flexural Hybrid Span Beam” and developments in sustainable ultra-high-performance concrete. His international collaborations with institutions like KFUPM and partnerships with industrial entities such as SABIC reflect his ability to integrate research, application, and innovation effectively. Recognized among the Top 2% World Scientists in Construction by Stanford University, Dr. Hakeem has also served as a certified academic reviewer for the National Center for Academic Accreditation and Evaluation (NCAAA). His numerous academic honors, leadership positions, and professional memberships underscore his ongoing commitment to academic excellence, sustainability, and research-driven education. In conclusion, Assoc. Prof. Dr. Ibrahim Yahya Hakeem stands out as a visionary academic leader whose sustained research productivity, innovative contributions, and institutional service continue to influence the global field of structural and materials engineering, promoting environmentally responsible construction practices and advancing engineering education standards worldwide.

Profile:  Scopus | ORCID | Google Scholar

Featured Publications 

  1. Hakeem, I. Y. (2025). Date palm fibers (from Najran city) as reinforcement in UHPC: Design, performance, and microstructural analysis. AIP Advances.

  2. Hakeem, I. Y. (2025). Flexural performance and ductility of UHPC incorporating Najran City’s lathe waste powder (LWP) for substitution of cement. Innovative Infrastructure Solutions.

  3. Hakeem, I. Y. (2025). Sustainable high strength polymer concrete with high ratios of recycled aggregate from different decades under heat curing. Revista Materia.

  4. Hakeem, I. Y. (2024). Corrigendum to “Experimental investigation and analytical verification of buckling of functionally graded carbon nanotube-reinforced sandwich beams.” Heliyon, 10(8), e28388.

  5. Hakeem, I. Y. (2023). Application of waste ceramic powder as a cement replacement in reinforced concrete beams toward sustainable usage in construction. Case Studies in Construction Materials, 19, e02444.

  6. Hakeem, I. Y. (2023). Effects of glass fiber on recycled fly ash and basalt powder-based geopolymer concrete. Case Studies in Construction Materials, 19, e02659.

  7. Hakeem, I. Y. (2014). Ultra-high performance concrete reinforcement bars. U.S. Patent Publication No. US20140190113A1.

 

Dr. Nematollah Fouladi | Engineering and Technology | Best Researcher Award

Dr. Nematollah Fouladi | Engineering and Technology | Best Researcher Award

Assistant professor | Iranian Space Research Center | Iran

Dr. Nematollah Fouladi is an accomplished aerospace engineer and an innovative researcher whose scientific vision and technical mastery have significantly contributed to advancements in the field of aerospace propulsion and fluid dynamics. He currently serves as a Researcher at the Iranian Space Research Center, Tehran, where he leads and collaborates on cutting-edge projects focusing on high-altitude testing facilities, supersonic exhaust diffusers, and aerodynamic system optimization. Dr. Fouladi obtained his Ph.D. in Aerospace Engineering from Sharif University of Technology, Tehran, one of the most prestigious engineering universities recognized for its excellence in research and education. His academic journey has been distinguished by a strong focus on computational and experimental fluid mechanics, turbulence modeling, and supersonic flow control, all of which reflect his unwavering dedication to precision and scientific advancement. Throughout his career, Dr. Fouladi has demonstrated outstanding analytical and research capabilities, successfully integrating advanced simulation techniques with practical experimentation to develop efficient and reliable aerospace propulsion systems. His research interests lie primarily in the areas of aerothermodynamics, gas dynamics, high-altitude testing methodologies, and aerospace cooling system design, which play a critical role in improving the performance, safety, and sustainability of aerospace technologies. In addition to his technical expertise, Dr. Fouladi exhibits a strong command of numerical modeling, data interpretation, computational fluid dynamics (CFD), heat transfer analysis, and system integration, enabling him to contribute to interdisciplinary collaborations within international research networks. As an active contributor to scholarly communication, Dr. Nematollah Fouladi has authored 18 documents, garnered 109 citations, and achieved an h-index of 6, demonstrating his growing influence and recognition in the global aerospace research community. His works are published in leading peer-reviewed journals such as Physics of Fluids, Acta Astronautica, Aerospace Science and Technology, and Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. These publications have provided valuable insights into high-speed flow behavior, diffuser performance, and nozzle optimization—offering practical solutions to aerospace challenges faced by industry and research institutions alike. Dr. Fouladi’s commitment extends beyond research as he actively participates in collaborative engineering projects, contributing to advancements in Iran’s aerospace infrastructure and capacity-building initiatives. His professional experience also includes involvement in experimental investigations that support national and international aerospace objectives, reinforcing his reputation as a reliable and forward-thinking engineer. He has demonstrated leadership qualities through mentoring emerging researchers, fostering innovation-driven research environments, and promoting scientific excellence across disciplines. Dr. Fouladi’s research skills encompass a comprehensive blend of theoretical analysis, computational proficiency, and experimental design—qualities that make his work both academically robust and practically relevant. His contributions have been recognized by academic and research communities, earning him honors and respect as a key figure in aerospace technology development.

Profile:  Google scholar | Scopus | ORCID

Featured Publications

  1. Fouladi, N. (2025). Cooling system design and analysis for high heat flux large dimension diffuser of a high-altitude test facility. International Journal of Thermofluids. (Cited by 5)

  2. Fouladi, N. (2024). Experimental evaluation of the influence of the diffuser inlet to nozzle exit cross sectional area ratio on pressure oscillation in a high-altitude test facility. Physics of Fluids. (Cited by 7)

  3. Fouladi, N. (2024). Gas dynamics at starting and terminating phase of a supersonic exhaust diffuser with a conical nozzle. Physics of Fluids. (Cited by 9)

  4. Fouladi, N. (2023). Experimental and comprehensive investigation of second throat diffuser area effect on ground test of a thrust optimized parabolic nozzle with different expansion ratios. Acta Astronautica. (Cited by 10)

  5. Fouladi, N. (2023). Starting transient analysis of second throat exhaust diffuser in high-altitude test of a thrust optimized parabolic nozzle. Physics of Fluids. (Cited by 6)

 

Ivan Martins | Engineering and Technology | Best Researcher Award

Ivan Martins | Engineering and Technology | Best Researcher Award

Mr Ivan Martins, University of São Paulo, USP, Brazil

Mr. Ivan Martins – Evaluation for Best Researcher Award.

Publication profile

Orcid

Biography of Mr. Ivan Martins

Mr. Ivan Martins is an accomplished Mechanical Engineer and current PhD student at the São Carlos School of Engineering, University of São Paulo (EESC-USP). His research focuses on the numerical simulation of liquid-gas phase change heat transfer using the lattice Boltzmann method, under the guidance of Professor Dr. Luben Cabezas Gómez. Ivan has received several prestigious awards, including the CREA-SP Professional Development Award in Mechanical Engineering and the Institute of Engineering Award in 2023. His academic journey is supported by multiple research grants, and he has contributed significantly to his field with numerous publications.

Research and Publications

Ivan’s research centers on the development and application of the lattice Boltzmann method to solve complex heat transfer problems. His work includes innovative studies such as the experimental analysis of single-cavity bubble nucleation and growth, new boundary condition schemes for thermal lattice Boltzmann methods, and modeling of transport phenomena without conversion to lattice units. His research has been published in reputable journals, including Experimental Thermal and Fluid Science and International Communications in Heat and Mass Transfer, and presented at various international conferences.

Awards and Recognitions

Ivan has been recognized for his outstanding contributions to mechanical engineering. Notably, he received the CREA-SP Professional Development Award and the Institute of Engineering Award, both in 2023. These distinctions highlight his expertise and dedication to advancing the field of mechanical engineering through rigorous research and innovative solutions.

Academic and Professional Experience

Ivan’s academic career is marked by his active involvement in research and development. He was an undergraduate research scholar at the University of São Paulo from 2019 to 2022, where he worked on the lattice Boltzmann method for numerical simulation in microchannels. Additionally, he completed a research internship at the University of A Coruña, focusing on the experimental study of pool boiling heat transfer processes. His research has been funded by prestigious organizations such as the São Paulo Research Foundation (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CAPES).

Conclusion

Based on Mr. Ivan Martins’ extensive academic background, significant research contributions, and numerous awards, he is a strong candidate for the Best Researcher Award. His work in mechanical engineering, particularly in the numerical simulation of heat transfer phenomena, showcases his commitment to excellence and innovation in his field.

Publication top notes

A new methodology for experimental analysis of single-cavity bubble’s nucleation, growth and detachment in saturated HFE-7100