Dr. Nematollah Fouladi | Engineering and Technology | Best Researcher Award

Dr. Nematollah Fouladi | Engineering and Technology | Best Researcher Award

Assistant professor | Iranian Space Research Center | Iran

Dr. Nematollah Fouladi is an accomplished aerospace engineer and an innovative researcher whose scientific vision and technical mastery have significantly contributed to advancements in the field of aerospace propulsion and fluid dynamics. He currently serves as a Researcher at the Iranian Space Research Center, Tehran, where he leads and collaborates on cutting-edge projects focusing on high-altitude testing facilities, supersonic exhaust diffusers, and aerodynamic system optimization. Dr. Fouladi obtained his Ph.D. in Aerospace Engineering from Sharif University of Technology, Tehran, one of the most prestigious engineering universities recognized for its excellence in research and education. His academic journey has been distinguished by a strong focus on computational and experimental fluid mechanics, turbulence modeling, and supersonic flow control, all of which reflect his unwavering dedication to precision and scientific advancement. Throughout his career, Dr. Fouladi has demonstrated outstanding analytical and research capabilities, successfully integrating advanced simulation techniques with practical experimentation to develop efficient and reliable aerospace propulsion systems. His research interests lie primarily in the areas of aerothermodynamics, gas dynamics, high-altitude testing methodologies, and aerospace cooling system design, which play a critical role in improving the performance, safety, and sustainability of aerospace technologies. In addition to his technical expertise, Dr. Fouladi exhibits a strong command of numerical modeling, data interpretation, computational fluid dynamics (CFD), heat transfer analysis, and system integration, enabling him to contribute to interdisciplinary collaborations within international research networks. As an active contributor to scholarly communication, Dr. Nematollah Fouladi has authored 18 documents, garnered 109 citations, and achieved an h-index of 6, demonstrating his growing influence and recognition in the global aerospace research community. His works are published in leading peer-reviewed journals such as Physics of Fluids, Acta Astronautica, Aerospace Science and Technology, and Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. These publications have provided valuable insights into high-speed flow behavior, diffuser performance, and nozzle optimization—offering practical solutions to aerospace challenges faced by industry and research institutions alike. Dr. Fouladi’s commitment extends beyond research as he actively participates in collaborative engineering projects, contributing to advancements in Iran’s aerospace infrastructure and capacity-building initiatives. His professional experience also includes involvement in experimental investigations that support national and international aerospace objectives, reinforcing his reputation as a reliable and forward-thinking engineer. He has demonstrated leadership qualities through mentoring emerging researchers, fostering innovation-driven research environments, and promoting scientific excellence across disciplines. Dr. Fouladi’s research skills encompass a comprehensive blend of theoretical analysis, computational proficiency, and experimental design—qualities that make his work both academically robust and practically relevant. His contributions have been recognized by academic and research communities, earning him honors and respect as a key figure in aerospace technology development.

Profile:  Google scholar | Scopus | ORCID

Featured Publications

  1. Fouladi, N. (2025). Cooling system design and analysis for high heat flux large dimension diffuser of a high-altitude test facility. International Journal of Thermofluids. (Cited by 5)

  2. Fouladi, N. (2024). Experimental evaluation of the influence of the diffuser inlet to nozzle exit cross sectional area ratio on pressure oscillation in a high-altitude test facility. Physics of Fluids. (Cited by 7)

  3. Fouladi, N. (2024). Gas dynamics at starting and terminating phase of a supersonic exhaust diffuser with a conical nozzle. Physics of Fluids. (Cited by 9)

  4. Fouladi, N. (2023). Experimental and comprehensive investigation of second throat diffuser area effect on ground test of a thrust optimized parabolic nozzle with different expansion ratios. Acta Astronautica. (Cited by 10)

  5. Fouladi, N. (2023). Starting transient analysis of second throat exhaust diffuser in high-altitude test of a thrust optimized parabolic nozzle. Physics of Fluids. (Cited by 6)

 

Yingchun Xie | Engineering and Technology | Best Researcher Award

Yingchun Xie | Engineering and Technology | Best Researcher Award

Prof Yingchun Xie, College of Engineering, Ocean University of China, China

Prof. Yingchun Xie is a Full Professor at the Faculty of Engineering, Ocean University of China. She specializes in the safety of new energy ships and the environmental adaptability of marine equipment. With over 20 research projects funded by the National Natural Science Foundation of China, Prof. Xie has published 40+ papers, 2 monographs, and holds 30 patents. She has won several prestigious awards, including the Science and Technology Progress Prize of Shandong Province. She has an H-index of 45 and actively contributes to academic conferences and collaborative research. 🌊🚢🔬📚🎓

Publication Profile

Scopus

Education & Experience

Dr. Yingchun Xie is a Full Professor at the Faculty of Engineering, Ocean University of China, specializing in the safety of new energy ships and the environmental adaptability of offshore equipment. Over the years, she has led two National Natural Science Foundation of China-funded projects and managed over 20 scientific research endeavors. Her impressive work includes over 40 academic papers, two monographs, and more than 20 authorized patents. Dr. Xie has received notable honors, including the First Prize for Science and Technology Progress in Shandong Province and the Qingdao Youth Science and Technology Award. 🚢🔬📚🏆🧑‍🔬

Research

Prof. Yingchun Xie has made significant contributions to research with 24 completed and ongoing projects. With 637 citations across Scopus, Web of Science, and other databases, he has authored 3 books and 46 journal publications in SCI and SCIE-indexed journals. His work has led to 30 patents, and he has delivered 10 invited talks. Prof. Xie has successfully supervised 19 research scholars and currently guides 18 others. He has organized 10 conferences/workshops and holds 5 functional MoUs with universities and industries. A member of 18 professional bodies, he has received 11 awards, demonstrating his dedication to advancing research. 📚🔬🌍👨‍🏫🎓

Research & Development

Dr. Yingchun Xie is a leading expert in the safety of new energy ships and the environmental adaptability of marine engineering equipment. With over 20 research projects, including National Natural Science Foundation tasks, she has tackled various technical challenges, contributing significantly to the industry’s technical advancement. Driven by innovation, Dr. Xie bridges cutting-edge academic research with practical engineering applications, promoting the development of relevant professional theories. Her research achievements have earned her recognition at academic and industry events, enhancing her university’s visibility and attracting resources to advance the field of new energy ships and marine equipment. 🚢🔬🌱🌊📚

Research Focus

Prof. Yingchun Xie’s research primarily focuses on marine and energy systems, with an emphasis on advanced technologies for hydrogen energy, acoustic emission monitoring, and underwater engineering. His work on hydrogen diffusion and sensor strategies in marine engine rooms is pivotal for improving safety and energy efficiency in maritime applications 🚢💡. He also explores deep learning methods for methane plume detection using optical imaging 🧠📸 and hydrodynamic characteristics of underwater gas storage devices 🌊🔋. Additionally, Prof. Xie is involved in the thermodynamic and economic analysis of energy systems, including combined cooling, heating, and power systems 🔥💨. His diverse research combines ocean engineering, energy storage, and marine technologies.

Publication Top Notes

Research on hydrogen diffusion and sensor arrangement strategy in a marine engine room

FMAW-YOLOv5s: A deep learning method for detection of methane plumes using optical images

Near-field acoustic emission source localization method based on orthogonal matching pursuit under nonuniform linear array

Numerical simulation and experimental study of hydrodynamic characteristics of inverted-droplet underwater gas storage devices

Thermodynamic and economic analysis of the combined cooling, heating, and power system coupled with the constant-pressure compressed air energy storage

Grabbing Path Extraction of Deep-Sea Manganese Nodules Based on Improved YOLOv5

Study on the impact of wave characteristics on the performance of full-scale tidal turbine

An improved near-field weighted subspace fitting algorithm based on niche particle swarm optimization for ultrasonic guided wave multi-damage localization