Jialin Li | Environmental Science | Best Researcher Award

Mr. Jialin Li | Environmental Science | Best Researcher Award

Doctor | Fudan university | China

Mr. Jialin Li is an accomplished researcher and Doctor at Fudan University, specializing in the preparation, functionalization, and application of advanced carbon-based porous materials for hydrogen storage, energy storage, and carbon dioxide capture. His educational background includes a master’s and doctorate in chemical engineering and materials science, where his primary focus was on nano-pore interface micro-environment regulation, design of multi-level nano-pore structures, and surface chemical modification of functional porous carbon fibers, carbon nanofibers, carbon aerogels, and porous carbon materials. Professionally, Mr. Jialin Li has been involved in significant research projects such as the coupling regulation of ultra-fine pores and hydrogen-bond microenvironment of polyacrylonitrile porous carbon nanofibers and investigating hydrogen adsorption mechanisms under confined conditions. He has made valuable contributions to material design strategies for energy applications and has played a key role in translating research findings into practical solutions, including patented technologies for preparing biomass textile fabric electrodes and pre-oxidized fiber fabric electrodes for flow batteries. As a dedicated researcher, Mr. Jialin Li has authored 14 documents, 124 citations, 6 h-index, which highlights his consistent research output and influence in the scientific community. His research has been widely published in reputable international journals, including the Chemical Engineering Journal, Journal of Colloid and Interface Science, ACS Nano, and International Journal of Hydrogen Energy, all indexed in Scopus and SCI, reflecting his ability to contribute to high-quality peer-reviewed publications. Mr. Jialin Li’s research interests include developing new porous carbon materials with ultra-high specific surface areas, improving gas adsorption performance at ambient conditions, and creating novel strategies for hydrogen and carbon dioxide storage. His research skills span advanced material synthesis, nano-structuring, micro-environment modulation, adsorption mechanism analysis, and interface chemical engineering, combined with hands-on experience in experimental design and data interpretation. He is also actively engaged in collaborative research that bridges chemistry, materials science, and environmental engineering, reflecting his interdisciplinary approach. Beyond his technical expertise, Mr. Jialin Li has contributed to mentoring younger researchers, fostering collaboration within his team, and supporting sustainable energy initiatives. His honors include recognition for scientific excellence through peer-reviewed publications, contribution to multiple high-impact studies, and the development of patented solutions that support energy sustainability.

Profile:  Scopus

Featured Publications

Li, J., Wang, Y., Zhang, Y., Zhao, W., Bao, W., Duan, Y., Yu, J., Zhu, B., & Qiao, K. (2024). Dipole-induced hydrogen bonds enhanced P/O co-doped Lyocell-based porous carbon fiber cloth for hydrogen storage under ambient pressure. Chemical Engineering Journal, 490, 151633. Citations: 35

Li, J., Duan, Y., Wang, Y., Zhang, Y., Zhou, J., Zhao, W., Yu, J., Zhu, B., & Qiao, K. (2024). Microenvironment modulation of interpenetrating-type hierarchical porous foam carbon by mild-homogeneous activation for H₂ storage and CO₂ capture under ambient pressure. Journal of Colloid and Interface Science, 675, 783–791. Citations: 28

Yu, J., Li, J., Chen, F., Chi, C., Zhang, W., Bao, W., Zhao, X., Zhu, B., & Qiao, K. (2024). Micro-nano scale synchronous “carving” of viscose fiber in activation process for atmospheric hydrogen storage. International Journal of Hydrogen Energy, 63, 411–417. Citations: 19

Zhang, Y., Zhu, B., Zhao, S., Zhao, W., Zhou, M., Sun, Y., Qiao, K., Liu, J., Zhou, J., & Li, J. (2024). In situ synthesis of self-assembly supramolecular crystal seeds within continuous carbon nanofibers for improved fiber graphitic structure. ACS Nano, 18(17), 11360–11374. Citations: 22

Bao, W., Yu, J., Chen, F., Du, H., Zhang, W., Yan, S., Lin, T., Li, J., Zhao, X., & Zhu, B. (2023). Controllability construction and structural regulation of metal-organic frameworks for hydrogen storage at ambient condition: A review. International Journal of Hydrogen Energy, 48(92), 36010–36034. Citations: 20

 

 

Keigo Hisadome | Environmental Science | Best Researcher Award

Dr. Keigo Hisadome | Environmental Science | Best Researcher Award

Dr. Keigo Hisadome | Environmental Science | Section Manager | Asia Air Survey Co., Ltd | Japan 

Dr. Keigo Hisadome is a highly respected Section Manager at Asia Air Survey Co., Ltd., with extensive expertise in geological survey, groundwater monitoring, soil contamination assessment, and large-scale environmental remediation projects. He has played a key role in advancing the understanding and management of environmental radioactivity, particularly in areas impacted by nuclear incidents. His professional journey is marked by a commitment to integrating scientific research with practical field operations, resulting in measurable improvements in environmental health and safety. Dr. Keigo Hisadome is recognized for his ability to translate complex data into actionable strategies that protect communities and ecosystems.

Professional Profile 

Education

Dr. Keigo Hisadome holds a doctoral degree in Environmental Science with a focus on environmental radioactivity and contamination remediation. His academic journey provided a robust foundation in geology, hydrology, and soil science, enabling him to approach environmental challenges with a multidisciplinary perspective. During his doctoral studies, he concentrated on innovative methodologies for monitoring and mitigating radioactive material transfer, contributing to the development of improved remediation techniques. His education has empowered him to take leadership roles in projects that require technical precision, scientific rigor, and strategic planning.

Experience

Dr. Keigo Hisadome has accumulated significant experience in managing field surveys, contamination assessments, and decontamination operations. As Section Manager, he oversees critical projects related to the remediation of radioactive contamination and the restoration of affected environments. His experience includes designing and implementing survey frameworks, coordinating multidisciplinary teams, and ensuring compliance with international safety standards. He has collaborated with government agencies, research institutes, and local stakeholders to develop solutions for long-term environmental recovery. His ability to combine technical expertise with management skills has positioned him as a trusted leader in environmental remediation initiatives.

Research Interest

Dr. Keigo Hisadome’s research interests revolve around environmental radioactivity, soil contamination dynamics, and groundwater monitoring systems. He is particularly interested in the transfer mechanisms of radioactive materials through forest ecosystems, with an emphasis on leaf litter decomposition and radionuclide migration. His work supports the creation of predictive models that inform decontamination strategies and land use planning. He also explores sustainable remediation techniques that balance ecological restoration with public safety. Dr. Hisadome’s research contributes to scientific understanding as well as to policy frameworks that address post-disaster recovery and long-term radiation risk management.

Award

Dr. Keigo Hisadome is being nominated for the Best Researcher Award in recognition of his exceptional contributions to environmental radioactivity research and his leadership in contamination remediation projects. His work has had a direct impact on the rehabilitation of areas affected by radioactive pollution, making a significant difference in community safety and environmental sustainability. This award would acknowledge his dedication to advancing science, his role in translating research into practical applications, and his commitment to mentoring future professionals in the field.

Selected Publication

“Assessment of Radioactive Material Transfer through Forest Leaf Litter” published in 2021 with 15 citations.

“Groundwater Monitoring Framework for Contaminated Sites” published in 2020 with 12 citations.

“Long-Term Behavior of Soil Contamination in Post-Disaster Areas” published in 2019 with 18 citations.

“Innovative Techniques for Large-Scale Decontamination Projects” published in 2021 with 10 citations.

Conclusion

Dr. Keigo Hisadome is a distinguished researcher whose expertise in environmental radioactivity has made a measurable difference in both scientific knowledge and public health outcomes. His dedication to research, field implementation, and knowledge dissemination has positioned him as a leader in the field of contamination remediation. With his extensive publication record, collaborative approach, and commitment to mentoring, he continues to advance scientific understanding and practical solutions for environmental challenges. This nomination highlights his substantial contributions to research and his potential to drive future innovations in environmental safety and sustainability.

bushra maryam | Environmental Science | Best Researcher Award

bushra maryam | Environmental Science | Best Researcher Award

Researcher at Tianjin University, China

Dr. Bushra Maryam is an emerging environmental scientist with a profound passion for nanotechnology and sustainable innovation. She is currently pursuing her Ph.D. in Environmental Sciences at Tianjin University, China, under the mentorship of Prof. Dr. Xianhua Liu. Her work bridges nanomaterials and ecological safety, focusing on lanthanide-doped upconverted nanocomposites for environmental and energy applications. With academic roots from the University of the Punjab, Pakistan, her career reflects a strong blend of academic excellence and applied scientific inquiry. Dr. Maryam has made impactful contributions to areas like microplastic detection, photocatalytic hydrogen generation, and nano-ecotoxicology, publishing in top-tier journals like Nature Communications, Environmental Pollution, and Sustainable Energy & Fuels. Her work is characterized by scientific rigor, innovation, and a clear commitment to environmental sustainability. Recognized with the prestigious Peiyang Future Scholars Scholarship, Dr. Maryam stands as a promising voice in the future of environmental science and nanotechnology.

Publication Profile

Google Scholar

Education

Dr. Maryam’s academic journey began at the University of the Punjab, Lahore, where she earned her B.Sc. (2006–2010) and M.Sc. (2011–2013) in Environmental Sciences. Her undergraduate thesis focused on developing Occupational Health and Safety Management Systems for the refrigerator industry, while her M.Sc. research investigated bioethanol production using Bacillus cellulosilyticus. These early projects demonstrated her strong foundation in industrial and bio-environmental issues. In 2020, she commenced her Ph.D. at Tianjin University, China, specializing in the design and application of lanthanide-doped upconverted nanocomposites for environmental monitoring and energy generation. Under the guidance of Prof. Dr. Xianhua Liu, her doctoral work has yielded cutting-edge research in photocatalysis, nanoplastics tracking, and eco-toxicological applications. This academic path reflects her continuous dedication to addressing global environmental challenges through interdisciplinary scientific research.

Experience

Dr. Bushra Maryam has a balanced portfolio of teaching, research, and industry-oriented experiences. From 2015 to 2019, she worked as a Senior Science Instructor at City Public High School in Pakistan, where she mentored young science students and integrated environmental topics into educational frameworks. Prior to that, she served as a Research Fellow (2011–2013) at the Food and Biotechnology Research Center under Pakistan’s Ministry of Science and Technology, contributing to industrial biotechnology projects. She also undertook a research project at Haier Industries in 2010, focusing on occupational health and safety. These professional engagements enriched her practical insights into environmental applications, bio-resource management, and safety compliance. Her multidisciplinary exposure has fueled her transition into a research-intensive career that now tackles global-scale environmental and sustainability concerns through scientific innovation.

Awards and Honors

Dr. Bushra Maryam has been honored with the Peiyang Future Scholars Scholarship by Tianjin University, a recognition awarded to high-potential international doctoral researchers in China. This prestigious scholarship affirms her outstanding academic performance and research promise in the environmental sciences. Additionally, she has actively participated in several high-impact scientific gatherings, including the International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE 2022) and the 14th Global Chinese Scholars Symposium (GCCES-2022). Earlier in her career, she engaged with national forums such as the World Environment Day Seminar (2012) and the International Conference on Toxicology (2012) hosted by UVAS. These accolades and involvements reflect not only her scholarly capabilities but also her commitment to public engagement, scientific exchange, and sustainable advocacy.

Research Focus

Dr. Maryam’s research revolves around the development, innovation, and environmental application of heterogeneous functional nanomaterials. Her core interest lies in utilizing lanthanide-doped upconversion nanoparticles for monitoring micro- and nanoplastics, hydrogen production, and eco-toxicological studies. She has successfully demonstrated the use of luminous polystyrene nanoparticles to trace nanoplastics in plants and nematodes and has explored photocatalytic hydrogen generation from ammonia borane using novel heterostructures. Her work bridges nanoscience with ecological safety, offering tools to visualize invisible environmental pollutants while promoting clean energy solutions. With a deep focus on sustainability, she explores how advanced nanomaterials can mitigate environmental threats, monitor contamination, and enhance water purification. Her interdisciplinary research integrates materials science, environmental toxicology, renewable energy, and molecular detection—positioning her as a transformative figure in environmental nanotechnology.

Publication Top Notes

  1. Environmental Science: Nano (2025)
    Luminous polystyrene upconverted nanoparticles to visualize the traces of nanoplastics in a vegetable plant.
    🔗 [DOI:10.1039/D4EN01052C]

  2. Sustainable Energy & Fuels (2024)
    Near-infrared driven photocatalytic hydrogen production from ammonia borane hydrolysis using heterostructure-upconverted nanoparticles.
    🔗 [DOI:10.1039/D4SE01047G]

  3. Sensors (Under Review)
    Luminous upconverted nanoparticles as high-sensitivity optical probes for visualizing nano- and microplastics in Caenorhabditis elegans.

  4. Industrial & Engineering Chemistry Research (2023)
    Self-supported Pt@Ni₂P for controllable hydrogen release from ammonia-borane hydrolysis.
    🔗 [DOI:10.1021/acs.iecr.3c01055]

  5. Nature Communications (2024)
    Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production.
    🔗 [DOI:10.1038/s41467-024-50421-x]

  6. Environmental Pollution (2024)
    Polystyrene nanoplastics distinctly impact cadmium uptake and toxicity in Arabidopsis thaliana.
    🔗 [DOI:10.1016/j.envpol.2024.124373]

  7. Renewable and Sustainable Energy Reviews (2024)
    Water-enabled electricity generation on film structures: From materials to applications.
    🔗 [DOI:10.1016/j.rser.2024.114461]

  8. Science of The Total Environment (2024)
    Microfluidic sensors for the detection of emerging contaminants in water: A review.