Luwen Yu | Experimental Design | Women Researcher Award

Assist. Prof. Dr. Luwen Yu | Experimental Design | Women Researcher Award

Assist. Prof. Dr. Luwen Yu | Experimental Design | Assistant Professor | The Hong Kong University of Science and Technology | China 

Assist. Prof. Dr. Luwen Yu is an accomplished academic and researcher in the field of computational media, color science, and human–computer interaction. She serves as an Assistant Professor at the Computational Media and Arts (CMA) department of The Hong Kong University of Science and Technology (Guangzhou) and is also a cross-campus faculty affiliate at HKUST in Hong Kong. Dr. Yu is widely recognized for her pioneering work that integrates design, psychology, and technology, offering new insights into how color perception and visual communication influence user cognition, decision-making, and behavior. Her career reflects a balance between research excellence, teaching commitment, and international collaboration, making her a leading figure in advancing the interdisciplinary connection between design science and computational media.

Professional Profile 

Education

Assist. Prof. Dr. Luwen Yu holds a Ph.D. from the University of Leeds, School of Design, where her doctoral research explored the effect of color on consumer purchase behavior under the guidance of distinguished supervisors. Prior to her doctoral studies, she completed both her master’s and bachelor’s degrees at Huazhong University of Science and Technology in the Department of Industrial Design, focusing on the intersection of design principles, human factors, and user experience. Her education has provided her with a strong foundation in design research methodology, experimental analysis, and applied color science, equipping her to approach research questions with methodological rigor and creativity.

Experience

Assist. Prof. Dr. Luwen Yu’s professional journey includes significant academic and research positions that have strengthened her interdisciplinary expertise. Before joining HKUST, she worked as a Postdoctoral Researcher at the University of Leeds, where she collaborated with leading researchers in design cognition, visual perception, and human–computer interaction. Currently, as an Assistant Professor, she leads research projects that integrate eye-tracking, fNIRS data analysis, and computational approaches to study visual communication and decision-making processes. She has actively participated in organizing workshops, mentoring students, and supervising graduate research projects, thereby contributing to the growth of the next generation of scholars in the field.

Research Interest

Assist. Prof. Dr. Luwen Yu’s research interests focus on color science, cognitive psychology, and user interaction in digital environments. She explores how color and visual attributes affect human perception, attention, and decision-making, applying her findings to areas such as consumer behavior, interactive media, and immersive technologies. Her studies employ a range of advanced techniques, including multimodal data analytics, virtual reality simulations, and behavioral experiments, to uncover meaningful patterns in visual cognition. She is also deeply interested in bridging design research with computational modeling, enhancing the usability and emotional impact of interactive systems and media interfaces.

Award

Assist. Prof. Dr. Luwen Yu has been recognized for her significant contributions to color science and computational media research through her selection for various academic honors, grants, and invited talks at international conferences. Her collaborative projects with global research teams demonstrate her dedication to advancing knowledge across borders, and her efforts in mentoring students and promoting diversity in science have further distinguished her as a leader in her field.

Selected Publication

Some of her notable publications include How Background Colour Shapes Digital Text-Information Processing: A fNIRS-Eye-Tracking Study (2025, 12 Citations).

Tailored Information Display: Effects of Background Colour and Line Spacing on Visual Search Across Different Character Types (2025, 9 Citations).

Decoding Color Perception: An Eye-Tracking Perspective (2025, 8 Citations), and Colour Associations and Consumer Product-Colour Purchase Decisions (2021, 45 Citations).

Conclusion

Assist. Prof. Dr. Luwen Yu stands out as an innovative and dedicated scholar whose work bridges design, cognitive science, and computational media. Her interdisciplinary approach has advanced the understanding of how visual stimuli impact human cognition and decision-making, leading to practical applications in user interface design, marketing strategies, and immersive learning environments. Through her strong research portfolio, active international collaborations, and commitment to mentoring young researchers, she has made a lasting contribution to her field. Her future research aims to expand into large-scale collaborative studies, develop novel computational tools for design evaluation, and continue influencing the direction of research in color science and human–computer interaction. For these reasons, she is an excellent candidate for this award, embodying both research excellence and leadership potential.

 

 

Pandiyarajan Thangaraj | Experimental Design | Best Researcher Award

Pandiyarajan Thangaraj | Experimental Design | Best Researcher Award

Assist Prof Dr Pandiyarajan Thangaraj, Indian Institute of Information Technology Design and Manufacturing Kurnool, India

Based on Assist. Prof. Dr. Pandiyarajan Thangaraj’s impressive academic background, research achievements, and professional contributions, he is indeed a strong candidate for a Best Researcher Award.

Publication profile

orcid

Academic Excellence

Dr. Pandiyarajan holds a Ph.D. in Physics from the prestigious National Institute of Technology, Trichy, and has a strong educational foundation in applied physics. His Ph.D. thesis focused on advanced nanostructures, reflecting his expertise in this field. With top scores in his academic pursuits, his consistent excellence showcases his dedication to learning and research.

Extensive Research Contributions

Dr. Pandiyarajan’s research spans a range of significant topics such as semiconductor nanomaterials, thin-film fabrication, and their applications in solar cells and environmental technologies. He has worked on prestigious projects, including graphene quantum dot-based hydrogen fuel production and solar cell enhancement, showcasing innovation in renewable energy and environmental sustainability. His work has resulted in numerous high-impact publications, cementing his reputation in the scientific community.

Global Collaborations

He has post-doctoral research experience in prestigious international institutions such as the University of Concepcion, Chile, and has been a visiting researcher in Mexico and Sweden. These collaborations demonstrate his active participation in global research networks, advancing knowledge through interdisciplinary efforts.

Honors and Editorial Roles

Dr. Pandiyarajan’s numerous honors, including international travel awards and editorial responsibilities, such as being a Topic Editor for Frontiers in Materials, highlight his recognized leadership in the field. His work as a reviewer for numerous high-profile journals further underscores his academic influence and expertise.

Research Grants and Leadership

His successful acquisition of multiple research grants, including a SERB-SRG project and a DRDO project, showcases his ability to secure competitive funding and lead groundbreaking research. His ongoing work in quantum dot sensitized photocathodes for hydrogen fuel production highlights his forward-thinking contributions to sustainable energy.

conclusion

Assist. Prof. Dr. Pandiyarajan Thangaraj’s academic rigor, extensive research output, international collaboration, and leadership in material science research make him a highly deserving candidate for the Best Researcher Award. His contributions not only advance scientific understanding but also offer practical solutions to global challenges.

publication top notes

Optimizing CuBi2O4 Solar Cells with PCBM Electron Transport Layer: A Comprehensive Simulation Study Achieving 32.16% Efficiency