Jana Al Haj Ali | Computer Science and Artificial Intelligence | Best Researcher Award

Mrs. Jana Al Haj Ali | Computer Science and Artificial Intelligence | Best Researcher Award

Mrs. Jana Al Haj Ali | Computer Science and Artificial Intelligence | PhD Student | University of Lorraine | France

Mrs. Jana Al Haj Ali is an accomplished researcher and PhD student in Computer Engineering, specializing in the design and implementation of cognitive digital twins for industrial applications. Her work integrates neuro-symbolic AI approaches to enable intelligent, adaptive, and human-centric human-robot interaction within cyber-physical systems. Through her innovative research, she has contributed to advancing the understanding of cognitive architectures, simulation models, and interoperability protocols, aiming to improve automation, safety, and efficiency in Industry 5.0 contexts. She is known for combining technical expertise, scientific rigor, and collaborative spirit to drive impactful solutions at the intersection of artificial intelligence, robotics, and cognitive systems.

Professional Profile 

Education

Mrs. Jana Al Haj Ali holds a Bachelor’s degree in Mathematics, followed by a Master’s degree in Mathematical Engineering for Data Science, which provided her with an interdisciplinary foundation in mathematical modeling, machine learning, and computational techniques. She is currently pursuing her doctoral studies in Computer Engineering at a leading research institute in France, where she is actively engaged in high-impact research focusing on cognitive digital twin technologies. Her educational background bridges mathematics, data science, and computer engineering, allowing her to approach complex research problems from both theoretical and applied perspectives.

Experience

Mrs. Jana Al Haj Ali has extensive research experience in the development of modular architectures for cognitive digital twins, focusing on emulation, cognition, and simulation functionalities. She has implemented cognitive exchange protocols between industrial robots and human operators, enabling adaptive reconfiguration of cyber-physical systems based on real-time cognitive feedback. She also completed a visiting research project at a prominent European research institute, where she designed cognitive models and integrated them into simulation environments to evaluate collaborative performance. Additionally, she has experience in data analysis, machine learning modeling, and physical risk estimation from her earlier research internships.

Research Interest

Her primary research interests include cognitive cyber-physical systems, cognitive digital twins, neuro-symbolic AI, knowledge representation, and human-robot collaboration. She is particularly focused on enhancing cognitive interoperability, developing architectures that combine deep learning with symbolic reasoning, and designing intelligent simulation frameworks that predict system behavior in real-time. Her work aims to address key challenges in Industry 5.0 by creating more resilient, adaptive, and human-centric automation solutions.

Award

Mrs. Jana Al Haj Ali has been recognized for her contributions through opportunities to present her research at prestigious international conferences, summer schools, and national symposia. Her participation in scientific events and collaboration with international research teams reflects her growing impact in the academic community. She is highly regarded for her ability to translate complex cognitive models into practical implementations, earning acknowledgment from peers and mentors for her innovative approach.

Selected Publication

  • Human Digital Twins: A Systematic Literature Review and Concept Disambiguation for Industry 5.0 (2025) – 45 citations

  • Cognition in Digital Twins for Cyber-Physical Systems and Humans: Where and Why? (2024) – 30 citations

  • Cognitive Architecture for Cognitive Cyber-Physical Systems (2024) – 28 citations

  • Cognitive Systems and Interoperability in the Enterprise: A Systematic Literature Review (2024) – 33 citations

Conclusion

Mrs. Jana Al Haj Ali is an outstanding candidate for this award, with a strong academic background, impactful research contributions, and a commitment to advancing the field of cognitive digital twins and human-robot collaboration. Her work demonstrates a unique combination of theoretical innovation and practical application, contributing to the future of intelligent and adaptive industrial systems. With a growing publication record, active participation in international collaborations, and dedication to knowledge dissemination, she is well positioned to emerge as a leader in cognitive cyber-physical systems research.

 

Zhibin Liu | Computer Science and Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Zhibin Liu | Computer Science and Artificial Intelligence | Best Researcher Award

Associate professor | School of Computer Science Qufu Normal University | China

Assoc. Prof. Dr. Zhibin Liu is a highly regarded academic and researcher in the field of computer science, currently serving as an associate professor at the School of Computer Science, Qufu Normal University. His professional journey demonstrates a strong commitment to advancing innovation in computing technologies, particularly within the areas of Internet of Things (IoT), machine learning, and reinforcement learning. He has established himself as a recognized scholar with notable research outputs and impactful contributions to the development of intelligent systems. His academic career reflects a balance between teaching excellence, high-quality research, and meaningful international collaborations, making him a respected figure among peers and students alike.

Professional Profile 

Education

Assoc. Prof. Dr. Zhibin Liu completed his doctoral studies in computer application technology at Hohai University, where he developed expertise in advanced computing techniques and intelligent network optimization. Prior to this, he obtained his master’s degree in computer science from Xi’an University of Science and Technology. His educational background has laid the foundation for his strong analytical skills, deep technical knowledge, and a research-oriented mindset that supports the integration of theory with practical applications. These academic milestones highlight his determination to pursue excellence in the evolving field of computer science and to contribute to the broader scholarly community through innovation and thought leadership.

Experience

Assoc. Prof. Dr. Zhibin Liu has extensive teaching and research experience in the domains of IoT, wireless communication systems, and computational intelligence. At Qufu Normal University, he has played a crucial role in mentoring students, supervising research projects, and leading collaborative academic initiatives. His contributions extend beyond national boundaries, as he has engaged with international researchers to develop joint solutions for pressing technological challenges. He has been actively involved in projects that emphasize routing algorithms, optimization of resource allocation, and the integration of reinforcement learning into real-world applications. Through his sustained efforts, he has strengthened the research culture within his institution and contributed to the growth of knowledge in cutting-edge areas of computer science.

Research Interest

The research interests of Assoc. Prof. Dr. Zhibin Liu are diverse and aligned with the global challenges in modern computing systems. His primary focus lies in the research and application of IoT and machine learning, with specific emphasis on routing algorithms and efficient resource allocation strategies for wireless sensor networks. He also investigates the integration of deep reinforcement learning to address optimization problems within communication systems. His work reflects a clear vision of enhancing scalability, energy efficiency, and computational performance in intelligent systems. This forward-looking research agenda demonstrates his commitment to bridging the gap between theoretical advancements and practical applications, ensuring his contributions remain relevant in addressing real-world challenges.

Award

Assoc. Prof. Dr. Zhibin Liu has received recognition for his impactful contributions to research and academia. His awards and honors highlight his role as a leading researcher in IoT and machine learning, particularly for his pioneering work in reinforcement learning and network optimization. These accolades reflect both institutional and scholarly recognition, positioning him as an influential figure in his domain. His dedication to academic excellence, research innovation, and community engagement has earned him respect and acknowledgment at both national and international levels. Such achievements signify his outstanding professional standing and underscore why he is a strong candidate for this award.

Selected Publication

  • Reinforcement learning based on multi agent value distribution for beamforming optimization in cellular networks (Published: 2021, Citations: 45).

  • Optimization of computational efficiency in IoT based on joint assistance of ARIS and UAV in MEC systems (Published: 2022, Citations: 32).

  • Energy efficient resource allocation strategy for wireless sensor networks using reinforcement learning (Published: 2020, Citations: 56).

  • Dynamic routing algorithm for IoT enabled smart environments through machine learning optimization (Published: 2019, Citations: 61).

Conclusion

Assoc. Prof. Dr. Zhibin Liu exemplifies academic excellence, research innovation, and leadership in the field of computer science. His contributions to IoT systems, reinforcement learning, and wireless network optimization have had significant influence, both in advancing knowledge and in enabling applications that address complex challenges in communication and computing. His achievements in research, combined with his dedication to mentoring students and leading collaborations, reflect his strong leadership qualities. With his consistent record of high-quality publications, international collaborations, and commitment to innovation, Assoc. Prof. Dr. Zhibin Liu is an outstanding candidate for this award. His future endeavors hold immense potential to shape the evolution of intelligent systems and contribute meaningfully to the global academic and scientific community.

Badr Machkour | Artificial Intelligence | Best Researcher Award

Dr. Badr Machkour | Artificial Intelligence | Best Researcher Award

Professor, Faculty of Legal, Economic and Social Sciences, Morocco 

Dr. Badr Machkour is a Moroccan researcher and academic with deep expertise in economics, finance, and digital transformation. Currently holding a Ph.D. in Economic and Management Sciences, he has contributed to multiple domains including Industry 4.0, financial digitalization, and educational innovation. With a robust blend of academic and consulting experience, Dr. Machkour bridges theory and practice to drive impactful research. 🌐📊

Profile

Scopus

Google Scholar

Orcid

🎓 Education

Dr. Machkour holds a Doctorate in Economic and Management Sciences (2018–2023) from the FSJES of Agadir. His academic foundation includes a degree in Audit and Management Control from ENCG Agadir (2014–2017), post-preparatory classes in Economics and Commerce (2012–2014), and a Mathematics Baccalaureate (2011–2012). His diverse training forms a strong base for multidisciplinary research. 📚🧠

💼 Professional Experience

Dr. Machkour has extensive experience as a financial auditor, consultant, and trainer. He currently serves as a trainer at the Cité des Métiers et des Compétences (OFPPT), delivering finance and management programs. His previous roles span auditing and consulting at prominent firms like Augeco, MAZARS Maroc, and Agadir Conseil, involving sectors from agriculture to banking. 🏢💼📈

🔬 Research Interests

His research explores the intersection of Industry 4.0, digital banking solutions, customer experience, AI in education, and entrepreneurship. Dr. Machkour is particularly interested in how technology transforms economic relationships, pedagogical structures, and corporate strategies. 🤖📱🏫

🏆 Awards & Honors

While specific awards are not listed, Dr. Machkour’s work has been featured in indexed journals and cited internationally — notably his highly cited paper on Industry 4.0’s implications in finance. His academic contributions reflect both quality and influence. 🥇🌍

📑 Publications

Industry 4.0 and its Implications for the Financial Sector, Procedia Computer Science, 2020 — Cited by 151 🏦

The Rise of Artificial Intelligence in Educational Management: A Prospective Analysis on the Role of the Virtual Educational Director, Procedia Computer Science, 2025 🧠

Internet of Things in Education: Transforming Learning Environments, Enhancing Pedagogy, and Optimizing Resource Management, Data and Metadata, 2024 🏫

L’impact de l’adoption des solutions digitales sur la relation banque-client, Revue Française d’Economie et de Gestion, 2024 — Cited by 2 📲

Les facteurs d’adoption des solutions digitales bancaires par les consommateurs marocains, IJAFAME, 2022 — Cited by 1 📱

The Uses of Connected Objects and Their Influence on the Customer Experience, Test Engineering and Management, 2020 — Cited by 1 🌐

Etude exploratoire du développement de l’esprit Entrepreneurial et des compétences Entrepreneuriales auprès des étudiants au Maroc, Alternatives Managériales Economiques, 2024 👨‍🎓

Entrepreneurship 4.0 and Success Factors in the Context of Industry 4.0: A literature review, African Scientific Journal, 2024 🚀

✅ Conclusion

Overall, Dr. Badr Machkour is a promising and accomplished researcher whose work bridges digital innovation and economic practice with scholarly insight. His growing citation record, topical relevance, and interdisciplinary reach make him a strong candidate for the Best Researcher Award. With continued international engagement and broader collaborative networks, his impact is poised to grow even further. 🌍📈

Yunqiang Sun | Artificial Intelligence | Best Researcher Award

Yunqiang Sun | Artificial Intelligence | Best Researcher Award

Prof. Dr Yunqiang Sun, 中北大学, China

Prof. Dr. Yunqiang Sun🌐📡 is a distinguished scholar specializing in automatic modulation recognition (AMR), wireless communications, and intelligent sensor networks. He has contributed groundbreaking research, including the development of the Multimodal Parallel Hybrid Neural Network (MPHNN), which achieves 93.1% recognition accuracy with reduced complexity. His expertise spans spatio-temporal signal processing, attention mechanisms, and hybrid neural networks. Prof. Sun has published extensively, with works featured in prestigious journals like Electronics (Switzerland) and IEEE Access. His research also explores gait recognition algorithms, millimeter-wave cavity filters, and ultrasonic signal transmission. A dedicated innovator, Prof. Sun’s work advances technologies in communication and sensing systems. 📊📖✨

Publication Profile

Scopus

Proposed Solution 🤖✨

The Multimodal Parallel Hybrid Neural Network (MPHNN) is an advanced model designed to address limitations in processing modulated signals. It preprocesses these signals in multimodal formats, enhancing data interpretation. By combining Convolutional Neural Networks (CNN) for spatial feature extraction and Bidirectional Gated Recurrent Units (Bi-GRU) for temporal feature processing, MPHNN efficiently captures both spatial and temporal dependencies. This innovative approach enables more accurate and robust signal processing, making it highly effective in various applications. Prof. Dr. Yunqiang Sun’s work highlights the power of integrating multiple neural network models for improved performance. 🧠🔧📡📊

Attention Mechanisms 🎯🔗

Prof. Dr. Yunqiang Sun’s research leverages advanced deep learning techniques to enhance recognition accuracy. By integrating the Convolutional Block Attention Module (CBAM) and Multi-Head Self-Attention (MHSA), his work in the Multi-Path Hierarchical Neural Network (MPHNN) effectively combines both temporal and spatial features. This fusion allows for improved recognition performance in complex tasks, as the model focuses on the most relevant information across time and space. Prof. Sun’s innovative approach showcases the power of attention mechanisms in modern neural networks. 🤖📊🧠🔍

Results 📊✅

Prof. Dr. Yunqiang Sun, MPHNN, has achieved an impressive 93.1% accuracy across multiple datasets, setting a new benchmark in model performance. His work stands out due to its lower complexity and reduced number of parameters compared to existing models, making it more efficient and scalable. This breakthrough represents a significant advancement in the field, offering a solution that balances high accuracy with computational efficiency. Prof. Sun’s innovative approach holds great promise for a wide range of applications, offering potential improvements in performance and resource utilization. 🔬📊💡📈

Diverse Publication Record

Prof. Dr. Yunqiang Sun is an accomplished researcher with a focus on AMR, gait recognition algorithms, and plasmonic waveguide-coupled systems. He has published extensively in prestigious journals such as IEEE Access, Electronics (Switzerland), and Advanced Composites and Hybrid Materials. Notable works include impactful publications like CTRNet: An Automatic Modulation Recognition Based on Transformer-CNN Neural Network and Research on Modulation Recognition Algorithm Based on Channel and Spatial Self-Attention Mechanism. Prof. Sun’s research continues to push the boundaries of technology, contributing significantly to the fields of signal processing and machine learning. 📚🔬📈💡

Citations and Recognition

Prof. Dr. Yunqiang Sun has contributed significantly to the field, with some recent works gaining traction and fewer citations, while others, like his paper on MEMS sensors in Cluster Computing, showcase a higher citation count, reflecting their enduring influence. His research spans various areas, where his innovative approaches and technical expertise continue to shape discussions and advancements in the field. Despite the varying citation impact, Prof. Sun’s work maintains its relevance and continues to inspire future developments in the areas he studies. 🌟📚🔬🧠📈

Research Focus

Prof. Dr. Yunqiang Sun’s research focuses on advanced signal processing, modulation recognition, and sensor technologies. He explores machine learning models like transformers and convolutional neural networks (CNNs) for automatic modulation recognition and signal analysis, with applications in communication systems. His work also extends to gait recognition using algorithms based on compressed sensing and MEMS sensors, which contribute to innovations in human-computer interaction and health monitoring. Prof. Sun’s expertise spans across ultrasonic wave transmission in negative refractive materials and advanced filter designs in millimeter-wave systems, with a strong emphasis on the intersection of signal processing and emerging technologies. 📡🤖📊

Publication Top Notes

CTRNet: An Automatic Modulation Recognition Based on Transformer-CNN Neural Network

Quadrule-passband millimeter-wave cavity filter based on non-resonant node

Transmission characteristics of ultrasonic longitudinal wave signals in negative refractive index materials

Numerical calculus solution of gait recognition algorithm based on compressed sensing

Application and research of MEMS sensor in gait recognition algorithm