Volodymyr Tychkov | Experimental Design | Best Researcher Award

Assoc. Prof. Dr. Volodymyr Tychkov | Experimental Design | Best Researcher Award

Assoc. Prof. Dr. Volodymyr Tychkov | Experimental Design | Best Researcher Award | Associate Professor | Cherkasy State Technological University | Ukraine 

Assoc. Prof. Dr. Volodymyr Tychkov is a researcher from Cherkasy State Technological University whose work lies at the intersection of instrumentation, mechatronics, non‐destructive testing, mathematical modelling, and optimization. He holds a Ph.D. (Technical Sciences) from Cherkasy State Technological University, awarded in 2017, and since then has built a strong professional profile: serving as Associate Professor in the Department of Instrumentation, Mechatronics and Computerized Technologies, Deputy Head of Faculty for Research, Full Academic of the Ukrainian Academy of Engineering Sciences, and active member of the Ukrainian Society for Non-Destructive Testing. His research interest centers on designing eddy current probes and excitation systems, surrogate models, active (meta)heuristic optimization, electromagnetic field modelling, and analytical instrumentation with applications in materials diagnostics and industrial process control. He has developed strong research skills in mathematical and computational modelling, electromagnetic probe synthesis, machine learning / surrogate modelling, signal‐noise suppression, and techniques for fast, accurate evaluation of material properties via non-destructive testing (including multifrequency and moving probe systems). Among his awards and honors are his election as a Full Academic in 2023 to the Ukrainian Academy of Engineering Sciences and other recognitions in his field for contributions to non-destructive testing; he has co-authored nearly 290 publications, showing strong citation and indexing via Scopus and related databases. In summary, Assoc. Prof. Dr. Volodymyr Tychkov has demonstrated consistent academic excellence, leadership in research, interdisciplinary collaboration, high productivity, and innovation in measurement technologies, making him a key contributor to instrumentation and diagnostics; his work promises continued impact in developing advanced non-destructive testing tools, optimization methods, and educational leadership in Ukraine and internationally.

Profile:  Google scholar Scopus | ORCID

Featured Publications

  1. Halchenko, V. Y., Trembovetska, R. V., & Tychkov, V. V. (2021). Surrogate synthesis of excitation systems for frame tangential eddy current probes. Archives of Electrical Engineering, 70(4), 743-757.

  2. Halchenko, V. Y., Trembovetska, R. V., & Tychkov, V. V. (2021). Surrogate synthesis of frame eddy current probes with uniform sensitivity in the testing zone. Metrology and Measurement Systems, 28(3), 551-564.

  3. Trembovetska, R. V., Halchenko, V. Y., & Tychkov, V. V. (2018). Studying the computational resource demands of mathematical models for moving surface eddy current probes for synthesis problems. Eastern-European Journal of Enterprise Technologies, 5(5 (95)), 39-46.

  4. Halchenko, V., Trembovetska, R., Bazilo, C., & others. (2023). Computer Simulation of the Process of Profiles Measuring of Objects Electrophysical Parameters by Surface Eddy Current Probes. In Information Technology for Education, Science, and Technics (ITEST 2022) (Lecture Notes on Data Engineering and Communications Technologies, Vol. 178), 411-424.

  5. Halchenko, V. Y., Trembovetska, R. V., & Tychkov, V. V. (2020). Surface Eddy Current Probes: Excitation Systems of the Optimal Electromagnetic Field (Review). Devices and Methods of Measurements, 11(2), 91-104.

 

Mengge Li | Experimental Design | Best Researcher Award

Ms. Mengge Li | Experimental Design | Best Researcher Award

PhD candidate | Shenyang Jianzhu University | China

Ms. Mengge Li is an accomplished and dedicated early-career researcher in civil engineering with a deep passion for advancing structural engineering design and resilience research through cutting-edge methodologies and collaborative academic endeavors. She graduated with a bachelor’s degree in civil engineering from Shenyang Jianzhu University and continued her academic journey with a master’s degree in civil engineering from the same institution, where she achieved excellent academic standing and was awarded multiple scholarships for her outstanding performance. Currently, she is pursuing her Ph.D. in civil engineering at Shenyang Jianzhu University, focusing on the testing, simulation, and design of square concrete-filled steel tubular beam-columns internally reinforced with I-section CFRP profiles under cyclic loading. Her research explores seismic performance, hysteretic behavior, and restoring force models of concrete-filled steel tubular members with CFRP reinforcement, aiming to improve safety and efficiency in structural engineering applications. Ms. Mengge Li has authored 3 documents, 2 Citations, 1 h-index, which have been published in reputed sources such as Engineering Structure (Q1), Journal of Building Structures, and proceedings of the 15th International Conference on Fibre-Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-15) & the 8th Asia-Pacific Conference on FRP in Structures (APFIS-2022). Her professional experience includes extensive involvement in experimental testing, finite element modeling, and structural simulation, showcasing her ability to integrate theory with practice. She is proficient in English, holding GET-6 certification, and has strong communication skills that allow her to collaborate effectively in both domestic and international research projects. Her research interests include high-strength concrete-filled steel tubular structures, CFRP reinforcement techniques, seismic performance analysis, and finite element modeling for sustainable construction. Ms. Mengge Li possesses excellent research skills such as data analysis, simulation modeling, and experimental design, as well as advanced office and presentation software proficiency, including Word, Excel, PPT beautification, and form creation, ensuring her work is presented with clarity and precision. In recognition of her academic excellence, she has received prestigious honors such as the doctoral student admission scholarship, doctoral graduate academic scholarship, and second-class graduate scholarship (twice), along with major national awards including the National First Prize in the Second National College Students Industrialized Architecture and Smart Construction Competition and the “Zhang Jiang Guoxin An Cup” BIM Modeling Competition.

Profile:  Scopus

Featured Publications

  1. Li, M. (2022). Testing, simulation, and design of square concrete-filled steel tubular beam-columns with internal I-section CFRP profiles under cyclic loading. Engineering Structure.

  2. Li, M. (2022). Experimental study on hysteretic behavior of concrete-filled square steel tubular members with I-section CFRP profiles with different steel ratios. Journal of Building Structures.

  3. Li, M. (2022). Research on the restoring force model of high-strength concrete-filled high-strength square steel tubular members under pure bending. Journal of Shenyang Jianzhu University (Natural Science).

  4. Li, M. (2022). Finite element analysis of concrete-filled square steel tubular columns internally reinforced by pultruded CFRP profile under cyclic loading. Proceedings of the 15th International Conference on FRPRCS & APFIS-2022.

  5. Li, M. (2022). Research on seismic performance of concrete-filled square steel tubular columns with CFRP profiles. Industrial Construction.

 

Vahid Hassani | Experimental Design | Best Researcher Award

Dr. Vahid Hassani | Experimental Design | Best Researcher Award

Dr. Vahid Hassani | Experimental Design | Research Fellow | University of Southampton | United Kingdom

Dr. Vahid Hassani is a distinguished Mechanical Design Engineer and accomplished researcher, recognized for his expertise in the design and optimisation of electromechanical systems, robotics, and applied artificial intelligence in engineering design. With extensive experience in both academia and industry, he has successfully led multidisciplinary projects focused on advancing energy-efficient mechanical systems and automation solutions. His professional journey reflects a commitment to innovation, problem-solving, and the translation of complex theoretical concepts into practical, industry-ready applications. Through his work, Dr. Vahid Hassani continues to contribute to the development of next-generation engineering solutions that address critical challenges in manufacturing, transport, and sustainable energy systems.

Professional Profile 

Education

Dr. Vahid Hassani earned his Ph.D. in Mechanical Engineering with a specialization in the dynamic modelling of piezoelectric actuators and precision mechanisms. His doctoral research focused on developing mathematical models to improve hysteresis characterization and enhance control accuracy in structural dynamics applications. He holds a Master’s degree in Aerospace Engineering, where he worked on designing and modelling advanced control systems using internal moving masses and dynamic neural network algorithms. He also holds a Bachelor’s degree in Aircraft Mechanical Engineering, equipping him with a strong foundation in mechanical systems and aeronautical maintenance, which laid the groundwork for his future research in mechanical system design and robotics.

Experience

Dr. Vahid Hassani has held senior research and innovation positions at leading global institutions, where he has made significant contributions to projects in compressor technology, rail vehicle energy harvesting, and predictive maintenance systems. His work includes the development of FPGA-based monitoring systems, CFD-driven performance optimisation, and additive manufacturing solutions for complex mechanical assemblies. He has collaborated with industry partners to deliver practical solutions such as 3D-printed nodal joints, ultrasonic sensor mounts, and AI-enabled delay prediction models for freight systems. Beyond research, he has taught undergraduate and postgraduate courses in mathematics, mechatronics, additive manufacturing, and control theory, playing a pivotal role in mentoring the next generation of engineers.

Research Interest

Dr. Vahid Hassani’s research interests span mechanical system design, design optimisation, robotics, and the integration of artificial intelligence for engineering applications. He is particularly focused on developing computational models and simulation tools that improve system reliability, energy efficiency, and manufacturing performance. His work in additive manufacturing and computational mechanics addresses challenges in creating lightweight, high-strength structures, while his projects in robotics and automation explore intelligent solutions for precision manufacturing. His research approach is inherently interdisciplinary, combining elements of mechanical engineering, control systems, and data-driven AI methodologies to solve real-world engineering problems.

Award

Dr. Vahid Hassani has been recognized with several awards for his contributions to research and innovation. He was a recipient of a prestigious research scholarship that supported his doctoral studies, highlighting the originality and impact of his work. He has also been awarded for his contributions to composite product development in international competitions, showcasing his ability to combine creativity and technical expertise to deliver innovative solutions. These recognitions underscore his dedication to pushing the boundaries of mechanical engineering and fostering collaboration between academia and industry.

Selected Publications

“Some of his notable publications include: “Design Optimisation of Additive Manufactured Pressure Regulators” (Published 2020, 52 Citations)”.

“Computational Modelling of Piezoelectric Actuators for Precision Control Applications” (Published 2019, 61 Citations).

“AI-Driven Predictive Maintenance for Rail Vehicle Systems” (Published 2021, 38 Citations).

“Multi-Agent Robotic Systems for Manufacturing Automation” (Published 2018, 44 Citations).

Conclusion

Dr. Vahid Hassani stands out as a leading researcher and engineer whose work bridges the gap between theoretical modelling and practical implementation. His significant contributions to mechanical system design, robotics, and applied AI have resulted in solutions that improve performance, sustainability, and reliability in critical engineering systems. His dedication to mentorship, collaboration, and continuous innovation positions him as a valuable contributor to the global engineering community. Dr. Vahid Hassani future research potential, combined with his leadership in interdisciplinary projects, makes him a highly deserving nominee for recognition in the field of engineering research and innovation.

 

 

Luwen Yu | Experimental Design | Women Researcher Award

Assist. Prof. Dr. Luwen Yu | Experimental Design | Women Researcher Award

Assist. Prof. Dr. Luwen Yu | Experimental Design | Assistant Professor | The Hong Kong University of Science and Technology | China 

Assist. Prof. Dr. Luwen Yu is an accomplished academic and researcher in the field of computational media, color science, and human–computer interaction. She serves as an Assistant Professor at the Computational Media and Arts (CMA) department of The Hong Kong University of Science and Technology (Guangzhou) and is also a cross-campus faculty affiliate at HKUST in Hong Kong. Dr. Yu is widely recognized for her pioneering work that integrates design, psychology, and technology, offering new insights into how color perception and visual communication influence user cognition, decision-making, and behavior. Her career reflects a balance between research excellence, teaching commitment, and international collaboration, making her a leading figure in advancing the interdisciplinary connection between design science and computational media.

Professional Profile 

Education

Assist. Prof. Dr. Luwen Yu holds a Ph.D. from the University of Leeds, School of Design, where her doctoral research explored the effect of color on consumer purchase behavior under the guidance of distinguished supervisors. Prior to her doctoral studies, she completed both her master’s and bachelor’s degrees at Huazhong University of Science and Technology in the Department of Industrial Design, focusing on the intersection of design principles, human factors, and user experience. Her education has provided her with a strong foundation in design research methodology, experimental analysis, and applied color science, equipping her to approach research questions with methodological rigor and creativity.

Experience

Assist. Prof. Dr. Luwen Yu’s professional journey includes significant academic and research positions that have strengthened her interdisciplinary expertise. Before joining HKUST, she worked as a Postdoctoral Researcher at the University of Leeds, where she collaborated with leading researchers in design cognition, visual perception, and human–computer interaction. Currently, as an Assistant Professor, she leads research projects that integrate eye-tracking, fNIRS data analysis, and computational approaches to study visual communication and decision-making processes. She has actively participated in organizing workshops, mentoring students, and supervising graduate research projects, thereby contributing to the growth of the next generation of scholars in the field.

Research Interest

Assist. Prof. Dr. Luwen Yu’s research interests focus on color science, cognitive psychology, and user interaction in digital environments. She explores how color and visual attributes affect human perception, attention, and decision-making, applying her findings to areas such as consumer behavior, interactive media, and immersive technologies. Her studies employ a range of advanced techniques, including multimodal data analytics, virtual reality simulations, and behavioral experiments, to uncover meaningful patterns in visual cognition. She is also deeply interested in bridging design research with computational modeling, enhancing the usability and emotional impact of interactive systems and media interfaces.

Award

Assist. Prof. Dr. Luwen Yu has been recognized for her significant contributions to color science and computational media research through her selection for various academic honors, grants, and invited talks at international conferences. Her collaborative projects with global research teams demonstrate her dedication to advancing knowledge across borders, and her efforts in mentoring students and promoting diversity in science have further distinguished her as a leader in her field.

Selected Publication

Some of her notable publications include How Background Colour Shapes Digital Text-Information Processing: A fNIRS-Eye-Tracking Study (2025, 12 Citations).

Tailored Information Display: Effects of Background Colour and Line Spacing on Visual Search Across Different Character Types (2025, 9 Citations).

Decoding Color Perception: An Eye-Tracking Perspective (2025, 8 Citations), and Colour Associations and Consumer Product-Colour Purchase Decisions (2021, 45 Citations).

Conclusion

Assist. Prof. Dr. Luwen Yu stands out as an innovative and dedicated scholar whose work bridges design, cognitive science, and computational media. Her interdisciplinary approach has advanced the understanding of how visual stimuli impact human cognition and decision-making, leading to practical applications in user interface design, marketing strategies, and immersive learning environments. Through her strong research portfolio, active international collaborations, and commitment to mentoring young researchers, she has made a lasting contribution to her field. Her future research aims to expand into large-scale collaborative studies, develop novel computational tools for design evaluation, and continue influencing the direction of research in color science and human–computer interaction. For these reasons, she is an excellent candidate for this award, embodying both research excellence and leadership potential.

 

 

Pandiyarajan Thangaraj | Experimental Design | Best Researcher Award

Pandiyarajan Thangaraj | Experimental Design | Best Researcher Award

Assist Prof Dr Pandiyarajan Thangaraj, Indian Institute of Information Technology Design and Manufacturing Kurnool, India

Based on Assist. Prof. Dr. Pandiyarajan Thangaraj’s impressive academic background, research achievements, and professional contributions, he is indeed a strong candidate for a Best Researcher Award.

Publication profile

orcid

Academic Excellence

Dr. Pandiyarajan holds a Ph.D. in Physics from the prestigious National Institute of Technology, Trichy, and has a strong educational foundation in applied physics. His Ph.D. thesis focused on advanced nanostructures, reflecting his expertise in this field. With top scores in his academic pursuits, his consistent excellence showcases his dedication to learning and research.

Extensive Research Contributions

Dr. Pandiyarajan’s research spans a range of significant topics such as semiconductor nanomaterials, thin-film fabrication, and their applications in solar cells and environmental technologies. He has worked on prestigious projects, including graphene quantum dot-based hydrogen fuel production and solar cell enhancement, showcasing innovation in renewable energy and environmental sustainability. His work has resulted in numerous high-impact publications, cementing his reputation in the scientific community.

Global Collaborations

He has post-doctoral research experience in prestigious international institutions such as the University of Concepcion, Chile, and has been a visiting researcher in Mexico and Sweden. These collaborations demonstrate his active participation in global research networks, advancing knowledge through interdisciplinary efforts.

Honors and Editorial Roles

Dr. Pandiyarajan’s numerous honors, including international travel awards and editorial responsibilities, such as being a Topic Editor for Frontiers in Materials, highlight his recognized leadership in the field. His work as a reviewer for numerous high-profile journals further underscores his academic influence and expertise.

Research Grants and Leadership

His successful acquisition of multiple research grants, including a SERB-SRG project and a DRDO project, showcases his ability to secure competitive funding and lead groundbreaking research. His ongoing work in quantum dot sensitized photocathodes for hydrogen fuel production highlights his forward-thinking contributions to sustainable energy.

conclusion

Assist. Prof. Dr. Pandiyarajan Thangaraj’s academic rigor, extensive research output, international collaboration, and leadership in material science research make him a highly deserving candidate for the Best Researcher Award. His contributions not only advance scientific understanding but also offer practical solutions to global challenges.

publication top notes

Optimizing CuBi2O4 Solar Cells with PCBM Electron Transport Layer: A Comprehensive Simulation Study Achieving 32.16% Efficiency