Jialin Li | Environmental Science | Best Researcher Award

Mr. Jialin Li | Environmental Science | Best Researcher Award

Doctor | Fudan university | China

Mr. Jialin Li is an accomplished researcher and Doctor at Fudan University, specializing in the preparation, functionalization, and application of advanced carbon-based porous materials for hydrogen storage, energy storage, and carbon dioxide capture. His educational background includes a master’s and doctorate in chemical engineering and materials science, where his primary focus was on nano-pore interface micro-environment regulation, design of multi-level nano-pore structures, and surface chemical modification of functional porous carbon fibers, carbon nanofibers, carbon aerogels, and porous carbon materials. Professionally, Mr. Jialin Li has been involved in significant research projects such as the coupling regulation of ultra-fine pores and hydrogen-bond microenvironment of polyacrylonitrile porous carbon nanofibers and investigating hydrogen adsorption mechanisms under confined conditions. He has made valuable contributions to material design strategies for energy applications and has played a key role in translating research findings into practical solutions, including patented technologies for preparing biomass textile fabric electrodes and pre-oxidized fiber fabric electrodes for flow batteries. As a dedicated researcher, Mr. Jialin Li has authored 14 documents, 124 citations, 6 h-index, which highlights his consistent research output and influence in the scientific community. His research has been widely published in reputable international journals, including the Chemical Engineering Journal, Journal of Colloid and Interface Science, ACS Nano, and International Journal of Hydrogen Energy, all indexed in Scopus and SCI, reflecting his ability to contribute to high-quality peer-reviewed publications. Mr. Jialin Li’s research interests include developing new porous carbon materials with ultra-high specific surface areas, improving gas adsorption performance at ambient conditions, and creating novel strategies for hydrogen and carbon dioxide storage. His research skills span advanced material synthesis, nano-structuring, micro-environment modulation, adsorption mechanism analysis, and interface chemical engineering, combined with hands-on experience in experimental design and data interpretation. He is also actively engaged in collaborative research that bridges chemistry, materials science, and environmental engineering, reflecting his interdisciplinary approach. Beyond his technical expertise, Mr. Jialin Li has contributed to mentoring younger researchers, fostering collaboration within his team, and supporting sustainable energy initiatives. His honors include recognition for scientific excellence through peer-reviewed publications, contribution to multiple high-impact studies, and the development of patented solutions that support energy sustainability.

Profile:  Scopus

Featured Publications

Li, J., Wang, Y., Zhang, Y., Zhao, W., Bao, W., Duan, Y., Yu, J., Zhu, B., & Qiao, K. (2024). Dipole-induced hydrogen bonds enhanced P/O co-doped Lyocell-based porous carbon fiber cloth for hydrogen storage under ambient pressure. Chemical Engineering Journal, 490, 151633. Citations: 35

Li, J., Duan, Y., Wang, Y., Zhang, Y., Zhou, J., Zhao, W., Yu, J., Zhu, B., & Qiao, K. (2024). Microenvironment modulation of interpenetrating-type hierarchical porous foam carbon by mild-homogeneous activation for H₂ storage and CO₂ capture under ambient pressure. Journal of Colloid and Interface Science, 675, 783–791. Citations: 28

Yu, J., Li, J., Chen, F., Chi, C., Zhang, W., Bao, W., Zhao, X., Zhu, B., & Qiao, K. (2024). Micro-nano scale synchronous “carving” of viscose fiber in activation process for atmospheric hydrogen storage. International Journal of Hydrogen Energy, 63, 411–417. Citations: 19

Zhang, Y., Zhu, B., Zhao, S., Zhao, W., Zhou, M., Sun, Y., Qiao, K., Liu, J., Zhou, J., & Li, J. (2024). In situ synthesis of self-assembly supramolecular crystal seeds within continuous carbon nanofibers for improved fiber graphitic structure. ACS Nano, 18(17), 11360–11374. Citations: 22

Bao, W., Yu, J., Chen, F., Du, H., Zhang, W., Yan, S., Lin, T., Li, J., Zhao, X., & Zhu, B. (2023). Controllability construction and structural regulation of metal-organic frameworks for hydrogen storage at ambient condition: A review. International Journal of Hydrogen Energy, 48(92), 36010–36034. Citations: 20

 

 

Minli Wang | Environmental Science | Best Researcher Award

Minli Wang | Environmental Science | Best Researcher Award

Assoc. Prof. Dr minli Wang, Kunming University of Science and Technology, China

Assoc. Prof. Dr. Minli Wang is an esteemed scholar in environmental science and engineering, contributing significantly to atmospheric chemistry and water pollution control. With expertise in black carbon hygroscopicity, photochemical reactions, and environmental catalysis, her research has influenced pollution mitigation strategies. She has published in top-tier journals, secured competitive research grants, and played a pivotal role in advancing knowledge on environmental contaminants. As a dedicated academic at Kunming University of Science and Technology, Dr. Wang continues to make remarkable strides in environmental sustainability. Her dedication and research excellence make her a deserving recipient of the Best Researcher Award.

Publication Profile

Scopus

Education

Assoc. Prof. Dr. Minli Wang is a dedicated environmental scientist with a Ph.D. in Environmental Science & Engineering from Nanjing University (2015-2021) 🌿🔬. She earned her M.Sc. from Kunming University of Science and Technology (2012-2015) 🌎🧪 and her B.Sc. from Yunnan Normal University (2008-2012) in Agricultural Building Environment & Energy Engineering 🌾🏡. Her research focuses on pollution control, sustainable energy solutions, and environmental protection. With extensive expertise in tackling complex environmental challenges, Dr. Wang contributes significantly to advancing green technologies and sustainability. Her academic journey reflects a strong commitment to creating a cleaner and healthier planet. 📚🎓🌍

Experience

Assoc. Prof. Dr. Minli Wang is a dedicated researcher in environmental chemistry and atmospheric science 🌍⚛️. Since 2024, she has been an Associate Professor at Kunming University of Science and Technology 🏛️🔬, leading research on environmental pollutants and black carbon chemistry. Her work focuses on photochemical reactions and water pollutant degradation, contributing to sustainability efforts. As a project leader and participant in NSFC-funded projects 💰📑, she has investigated black carbon’s photochemical activity and antibiotic degradation mechanisms. With extensive academic and research experience, Dr. Wang continues to make significant advancements in environmental science, driving innovation for a cleaner future. 👩‍🔬💡

Awards & Honors

Assoc. Prof. Dr. Minli Wang is a distinguished researcher recognized for her contributions to environmental science and engineering. She received the China Patent Award for her innovative VOCs Photoreactor in 2021 🏅📜. As the Principal Investigator of the NSFC Young Scientist Grant (2023) 🎖️💡 and Yunnan Province Basic Research Project (2023) 🏆🔍, she leads groundbreaking studies in her field. Additionally, she participated in the NSFC Regional Science Fund (2023) 📊🔬. Her recognition at national and provincial levels highlights her impactful research, advancing sustainable solutions and cutting-edge technologies in air pollution control and environmental protection. 🌱🔬

Research Focus

Assoc. Prof. Dr. Minli Wang is an expert in black carbon’s environmental impact, atmospheric chemistry, and water pollution treatment. Her research explores black carbon’s hygroscopicity, analyzing its interactions with organic and inorganic components 🏭☁️. She investigates photochemical reactions to understand pollutant degradation under environmental conditions ☀️🧪. Additionally, she develops advanced catalytic materials for efficient wastewater treatment 💧⚛️. With an interdisciplinary approach, Dr. Wang enhances pollution control strategies, contributing to sustainable environmental solutions 🌱🔍. Her work plays a crucial role in mitigating environmental hazards and improving air and water quality for a healthier future.

Publication Top Notes

Gravimetric and spectroscopic analysis of hygroscopic properties of organic and inorganic components of three representative black carbon 🌿 Cited by: 24, Science of the Total Environment, 771: 145393

An investigation on hygroscopic properties of 15 black carbon (BC)-containing particles from different carbon sources: roles of organic and inorganic components 🌎 Cited by: 17, Atmospheric chemistry and physics, 20: 7941-7954

Comparing Photoactivities of Dissolved Organic Matter Released from Rice Straw-Pyrolyzed Biochar and Composted Rice Straw 🌱 Cited by: 12, Environmental Science & Technology, 56(4): 2803-2815

A review of the effects of environmental photochemical processes of black carbon: Mechanisms, challenges, and perspective 🌐 Cited by: 5, Process Safety and Environmental Protection, 106793: 106793

A bibliographic study reviewing the last decade of hydrochar in environmental application: history, status quo, and trending research paths 📚 Cited by: 8, Biochar, 5(1)