Mohammad Ansar Vakkattil | Advanced Materials Engineering | Cross-disciplinary Excellence Award

Mohammad Ansar Vakkattil | Advanced Materials Engineering | Cross-disciplinary Excellence Award

Mr Mohammad Ansar Vakkattil, FHNW, India

Mr. Mohammad Ansar Vakkattil is a dynamic interdisciplinary researcher whose work bridges polymer science, biomedical engineering, and 3D bioprinting. With a solid foundation in Rubber and Polymer Technology from premier Indian institutions like IIT Kharagpur and CUSAT, he has contributed significantly to intelligent materials, medical devices, and bioremediation. His roles as Senior Project Engineer at SCTIMST and researcher at institutions in Switzerland and Estonia reflect his global engagement. His pioneering work on smart materials and 3D-printed implantables, like cranioplasty scaffolds, showcases his innovation at the intersection of healthcare, materials science, and sustainability. With a flair for EU grant writing and multilingual expertise, he embodies the spirit of collaborative, cross-domain research. Through academic supervision, teaching, and publication, Mr. Vakkattil continues to inspire a new generation of material scientists and bioengineers worldwide.

Publication Profile

Google Scholar

Orcid

Education

Mr. Ansar earned his M.Tech in Rubber Technology from the Rubber Technology Centre, IIT Kharagpur, with a CGPA of 8.02/10, supported by a prestigious GATE scholarship. His thesis focused on castor oil extended epoxidised natural rubber, emphasizing sustainable material innovation. He completed his B.Tech in Polymer Science and Engineering from Cochin University of Science and Technology (CUSAT) with a CGPA of 7.23/10. His academic projects and thesis explored topics such as SBR-tire compounds and mechanical properties of latex films, grounding him in applied polymer engineering. Further technical training at the Indian Rubber Board and multiple industrial internships enriched his hands-on expertise in polymer processing, rubber compounding, and materials testing. His academic journey reflects not only intellectual merit but also a strategic focus on sustainable, biomedical, and smart material innovations.

Experience

Mr. Ansar’s professional experience reflects a blend of academic research and applied engineering. He served as a Senior Project Engineer at Sree Chitra Tirunal Institute for Medical Sciences and Technology, where he contributed to the development of Parylene coatings for implantable medical devices. At the University of Tartu and University of Applied Sciences Northwestern Switzerland, he specialized in 3D printing of artificial muscles and bioprinting for bioremediation. His skills span FDM, SLA, electrospinning, ceramic nanoparticles, and hydrogel synthesis. In addition to his lab work, he has acted as a supervisor, educator, and EU project contributor. His roles demonstrate advanced proficiency in additive manufacturing, smart biomaterials, and digital fabrication—key areas shaping future biomedical and environmental technologies.

Awards and Honors

Mr. Ansar’s academic and professional excellence has been consistently recognized. He was awarded the GATE Masters Scholarship (2016–2018) and achieved an All India Rank of 32 in the GATE Polymer Science and Material Science category. He was the Runner-Up in the Brand D Management Competition during Spring Fest at IIT Kharagpur in 2017. He has also earned accolades for multiple poster presentations, including on biomedical coatings and sustainable rubber materials, at IRMRA and other prestigious platforms. These honors underscore his creativity, technical acumen, and capacity to translate theoretical knowledge into impactful innovations. His teaching merits and development of study materials for GATE aspirants further reflect his commitment to academic excellence and mentorship in polymer sciences.

Research Focus

Mr. Ansar’s research focuses on intelligent materials, additive manufacturing (3D printing), and biomaterials for medical and environmental applications. His work integrates polymer science, smart textiles, hydrogel-based systems, electrospun materials, and bioprinting technologies for creating actuators, biomedical implants, and sustainable filtration systems. Notably, he has investigated bioprinting for bioremediation, parylene coatings for implants, and artificial muscles using FDM and photopolymer techniques. His interdisciplinary approach, combining biopolymer engineering, chemical vapor deposition, and cytocompatibility testing, has led to novel insights in the development of responsive materials and devices. His goal is to bridge the gap between ecological sustainability and human health by advancing customizable, low-impact technologies in the polymer and medical materials domain.

Publication Top Notes

Sumana Ghosh (Das) | Chemistry and Materials Science | Best Researcher Award

Sumana Ghosh (Das) | Chemistry and Materials Science | Best Researcher Award

Dr Sumana Ghosh Das, CSIR-CGCRI, India

Dr. Sumana Ghosh (Das) is a Senior Principal Scientist at CSIR-CGCRI, specializing in bio-ceramics and coatings 🎓🔬. She earned her B.E. from IIEST Shibpur, M.Tech from IIT Kharagpur, and Ph.D. from Jadavpur University. Her groundbreaking research focuses on thermal barrier coatings and microwave processing 📡. With over two decades at CGCRI, she has contributed to numerous high-impact projects and publications 📚. Dr. Ghosh has received prestigious awards like the Bharat Jyoti Award 🏆 and the Lifetime Achievement Award from Marquis Who’s Who 🌍. She actively mentors Ph.D. students and reviews national and international research proposals 👩‍🏫.

Publication Profile

Scopus

Educational Attainments 

Dr. Sumana Ghosh (Das) is a distinguished metallurgical engineer 🔧 with a passion for materials science. She earned her B.E. in Metallurgical Engineering from IIEST, Shibpur in 1998 🎓, followed by an M.Tech. in Materials Science from IIT Kharagpur in 2000 🏗️. In 2010, she completed her Ph.D. at Jadavpur University 🎓, focusing on the structure-property relationship in thermal barrier coatings 🔬. Dr. Ghosh’s academic journey reflects her dedication to advancing material technologies, contributing to innovations in engineering applications. Her expertise bridges the gap between research and practical solutions in the field of metallurgical and materials science.

Professional Experience 

Dr. Sumana Ghosh (Das) is a Senior Principal Scientist at CSIR-CGCRI, Kolkata 🌟. She began her career as a Junior Scientist in 2001 and steadily progressed to Scientist (2006-2011) 🧪, Senior Scientist (2011-2015) 🔬, and Principal Scientist (2015-2020) 🏅. With over two decades of experience, Dr. Ghosh has made significant contributions to the fields of bio-ceramics and coatings 💎. Her expertise continues to drive innovation and advanced research at CSIR-CGCRI, shaping the future of material science in India 🚀.

Scientific Contributions 

Dr. Ghosh is a leading researcher in materials science, with over 14 high-impact publications 📚. Her innovative work explores novel coating methods, microwave sintering, and high-temperature glass-ceramic coatings 🔬. These advancements have paved the way for breakthroughs in aerospace ✈️ and biomedical applications 🏥. Dr. Ghosh’s contributions enhance material durability and performance under extreme conditions, making her a key figure in cutting-edge technology development. Her research bridges fundamental science and real-world applications, driving innovation and expanding the possibilities of modern engineering 🌐.

Research Projects 

She has led and contributed to numerous prestigious projects funded by DRDO, CSIR, ARDB, and DST 🔬💼. Her expertise shines through her leadership in groundbreaking initiatives like microwave processing of ceramic composites ⚙️🔥. This innovative work has paved the way for advancements in high-temperature resistant coatings, crucial for aerospace and defense applications ✈️🛡️. Her dedication to cutting-edge research and collaboration with top scientific organizations highlights her commitment to technological progress and material science excellence 🚀📚. Through these contributions, she continues to drive forward solutions for complex engineering challenges.

Awards and Recognitions 

Dr. Sumana Ghosh (Das) is a distinguished materials scientist 🏅 with numerous accolades. She secured 3rd place 🥉 for Best Poster Paper (2009) by The Indian Ceramic Society & NIIST, CSIR. Honored in Marquis Who’s Who in Science and Engineering 📚 (2011-2020), she received their Lifetime Achievement Award in 2019. A reviewer for NIT Rourkela and CSIR-HRDG, she’s won the Bharat Jyoti Award 🏆, Bharat Excellence Award 🥇, and the Best Citizens of India Award. As an invited speaker globally 🌏, she continues to shape the field of materials science, particularly glass and ceramics.

Leadership and Engagements 

Dr. Ghosh plays a vital role in academic administration 🏛️, serving on Ph.D. selection committees 🎓, project staff recruitment panels 👩‍💻, and internal scientist assessment boards 🧑‍🔬. Her dedication extends to professional societies as a life member of the Indian Ceramic Society 🔬, reflecting her commitment to the field. Dr. Ghosh also contributes to scholarly advancement by regularly reviewing articles for prestigious journals 📚. Her active involvement in these areas highlights her leadership, expertise, and dedication to fostering academic excellence and scientific progress.

Research Focus

Dr. Sumana Ghosh’s research focuses on developing advanced thermal barrier coatings (TBCs) for gas turbine applications 🔥🔧. Her work emphasizes mitigating thermal growth oxidation (TGO) and enhancing high-temperature oxidation and corrosion resistance using novel glass-ceramic and composite materials 🧪🛡️. She explores functionally graded coatings and oxide-based anti-corrosion composites to improve durability and efficiency in harsh environments 🏭💡. Dr. Ghosh’s contributions include studies on microstructure evolution, hot corrosion behavior, and surface protection techniques, paving the way for more resilient and long-lasting turbine components ⚙️✨. Her innovative approaches hold significant potential for advancing materials science and energy systems 🚀.

Publication top notes

Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications

Novel oxide based anti-corrosion composite coating for gas turbines

High-temperature oxidation-resistant glass–ceramic/YSZ composite coatings for gas turbine engine applications

Hot Corrosion Behaviour of Three-Layered Functionally Graded Glass–ceramic–YSZ-based Thermal Barrier Coating System

Surface and interfacial microstructure evolution of isothermally oxidized thermal barrier coating system

Weiquan Cai | Chemistry and Materials Science | Best Researcher Award

Weiquan Cai | Chemistry and Materials Science | Best Researcher Award

Prof Weiquan Cai, School of Chemistry and Chemical Engineering, Guangzhou University, China

Prof. Weiquan Cai: A Leading Contender for the Best Researcher Award.

Publication profile

google scholar

Academic and Professional Background

Prof. Weiquan Cai is a Distinguished Professor and Academic Leader at Guangzhou University, holding this position since 2017. He earned his BS in Chemical Technology from Wuhan Institute of Technology in 1995, an MS in Environmental Engineering from China University of Petroleum in 2002, and a PhD in Chemical Technology from the Institute of Process Engineering, Chinese Academy of Sciences in 2005. His postdoctoral research focused on Material Chemistry and Physics at Wuhan University of Technology, and he was a visiting scholar at Kent State University (2009-2010). In 2012, he joined Wuhan University of Technology as a professor in the School of Chemical Engineering.

Research and Innovations

Prof. Cai has led over 30 research projects funded by various government bodies and enterprises, including five from the National Natural Science Foundation of China and four from Guangdong Provincial Science and Technology Plan. His research includes notable industrial applications, such as a high-efficiency grease cleaning agent. He has published over 200 papers, with around 165 indexed by SCI, including nine Highly Cited Papers. His work has earned significant citations and includes over 115 national invention patents, with 60 granted. His research has led to advancements in materials and chemical engineering, evidenced by his recent publications in prominent journals like Fuel and Chemical Engineering Journal.

Books Published (ISBN)

Prof. Cai co-authored “Chemical Engineering Principles Experiment” (ISBN: 978-7-5629-3466-0), published by Wuhan University of Technology Press in 2011, alongside Guangxu Zhang and Xuanjun Wu.

Patents Published/Under Process

He holds more than 115 national invention patents, with 60 authorized, including one USA invention patent.

Recent Journal Publications

Sorptive-enhanced biogas steam reforming over Pb-modified Ni-CaO bifunctional catalysts (Fuel, 2024). Immobilization of Ni on MOF-derived CeO2 for low-temperature dry reforming of methane (Fuel, 2024). Preparation of poly (vinyl alcohol)/polydopamine/tannin acid coupling of heterogeneous advanced oxidation processes and photocatalysis (Chemical Engineering Journal, 2024).

Publication top notes

Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and …

Synthesis of hierarchical Ni (OH) 2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water

Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties

Template-free synthesis of hierarchical spindle-like γ-Al 2 O 3 materials and their adsorption affinity towards organic and inorganic pollutants in water

Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO2 Reduction to HCOOH

Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment

Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull

Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53 (Fe) under visible light irradiation

Preparation and properties of quaternary ammonium chitosan-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogels