Luis Pastor Sanchez-Fernandez | Computer Science and Artificial Intelligence | Cross-disciplinary Excellence Award

Prof. Dr. Luis Pastor Sanchez-Fernandez | Computer Science and Artificial Intelligence | Cross-disciplinary Excellence Award

Senior Researcher at Center for Computing Research Instituto Politecncico Nacional, Mexico

Luis Pastor Sánchez-Fernández is a Full Professor at the Computer Research Center of the National Polytechnic Institute (IPN) in Mexico City, with a PhD in Technical Sciences from the José Antonio Echeverría Polytechnic Institute (CUJAE), Havana (1998). A distinguished researcher and educator, he has been a member of Mexico’s National System of Researchers since 2007 (currently Level II). His work spans multiple disciplines, including biomechanics, bioinformatics, environmental acoustics, signal processing, expert systems, and intelligent automation. He has supervised over 13 doctoral and 46 master’s students, many of whom received honors or were inducted into national research systems. Dr. Sánchez-Fernández has led several research groups and CONACYT-funded projects, notably designing the Environmental Noise Monitoring System for the Historic Center of Mexico City. A recipient of the 2014 IPN Applied Research Award, he is also an accomplished keynote speaker, reviewer for high-impact journals, and advocate for interdisciplinary and socially impactful research.

Professional Profile 

🎓 Education of Luis Pastor Sánchez-Fernández

Luis Pastor Sánchez-Fernández holds a PhD in Technical Sciences from the prestigious José Antonio Echeverría Polytechnic Institute (CUJAE) in Havana, Cuba, awarded in 1998. His doctoral education laid a strong interdisciplinary foundation, combining elements of engineering, computer science, and applied research. This academic background has been instrumental in shaping his cross-disciplinary research career, allowing him to contribute significantly to fields such as biomechanics, signal processing, and intelligent systems.

💼 Professional Experience of Luis Pastor Sánchez-Fernández

Luis Pastor Sánchez-Fernández has served as a Full Professor at the Computer Research Center of the National Polytechnic Institute (IPN), Mexico City, since 2000, where he has been a key figure in advancing interdisciplinary scientific research and technological development. With over two decades of academic and research leadership, he has directed multiple research groups in bioinformatics and intelligent measurement systems, supervised numerous postgraduate theses, and mentored future leaders in science. His expertise spans diverse fields including biomechanics, environmental acoustics, expert systems, and automation. He has also played critical roles as a project leader for national research initiatives funded by CONACYT, and as an advisor and evaluator of scientific proposals. His contributions extend beyond academia into societal impact projects, such as the Environmental Noise Monitoring System for Mexico City, solidifying his reputation as a cross-disciplinary innovator and research leader.

🔬 Research Interests of Luis Pastor Sánchez-Fernández

Luis Pastor Sánchez-Fernández’s research interests lie at the intersection of engineering, computer science, health sciences, and environmental studies, reflecting his strong cross-disciplinary approach. He focuses on the biomechanical analysis of patients with Parkinson’s disease, exploring computational and signal-based methods to improve medical diagnostics and rehabilitation. He is also deeply engaged in environmental acoustics, developing noise indicators and acoustic indices to assess and mitigate the harmful effects of urban noise pollution. His work extends into signal pattern recognition, expert systems, virtual instrumentation, and the design of intelligent systems for automation. Additionally, he has a sustained interest in bioinformatics, leading research groups that develop advanced computational tools for biological data analysis. His research consistently integrates theory and practical application, addressing real-world problems through innovative, multidisciplinary solutions.

🏅 Awards and Honors of Luis Pastor Sánchez-Fernández

Luis Pastor Sánchez-Fernández has received several prestigious awards and honors in recognition of his outstanding contributions to interdisciplinary research and academic mentorship. He was honored with the Applied Research Award by the National Polytechnic Institute (IPN) in 2014, acknowledging his impactful work that bridges scientific innovation and real-world application. As a dedicated mentor, he has received two thesis advisor awards from IPN, celebrating the excellence of his supervised postgraduate research. Many of his doctoral and master’s students have earned honorable mentions and Cum Laude distinctions, with several joining Mexico’s National System of Researchers—a testament to his role in cultivating high-caliber scholars. Since 2007, he has held Level II membership in the National System of Researchers of Mexico (SNI), further solidifying his reputation as a leader in cross-disciplinary scientific advancement.

🧾 Conclusion

The candidate demonstrates exceptional cross-disciplinary impact, strong leadership, and a deep commitment to advancing science at the intersection of multiple fields. His contributions in biomechanics, environmental monitoring, signal processing, and intelligent systems showcase not only depth but also the integration of diverse disciplines to address complex societal challenges. He is an ideal nominee for the Cross-disciplinary Excellence Award. Minor enhancements in visibility, global partnerships, and documentation of publications would make his case even more compelling.

📚 Publications by Luis Pastor Sánchez-Fernández

1.Title: Dataset for Gait Assessment in Parkinson’s Disease Patients

  • Authors: (Not provided)
  • Year: (Not explicitly listed)
  • Type: Data Paper – Open Access
  • Citations: 0

2.Title: Innovations and Technological Advances in Healthcare Remote Monitoring Systems for the Elderly and Vulnerable People: A Scoping Review

  • Authors: (Not fully listed)
  • Year: (Not explicitly listed)
  • Type: Review – Open Access
  • Citations: 0

3.Title: Computer Model for Gait Assessments in Parkinson’s Patients Using a Fuzzy Inference Model and Inertial Sensors

  • Authors: (Not fully listed)
  • Journal: Artificial Intelligence in Medicine
  • Year: 2025
  • Citations: 2

4.Title: Motion Smoothness Analysis of the Gait Cycle, Segmented by Stride and Associated with the Inertial Sensors’ Locations

  • Authors: (Not fully listed)
  • Journal: Sensors
  • Year: 2025
  • Type: Article – Open Access
  • Citations: 1

5.Title: Network Long-Term Evolution Quality of Service Assessment Using a Weighted Fuzzy Inference System

  • Authors: (Not fully listed)
  • Journal: Mathematics
  • Year: 2024
  • Type: Article – Open Access
  • Citations: 0

6.Title: Biomechanics of Parkinson’s Disease with Systems Based on Expert Knowledge and Machine Learning: A Scoping Review

  • Authors: (Not listed)
  • Year: (Not explicitly listed)
  • Type: Review – Open Access
  • Citations: 0

7.Title: An Integrated Approach to the Regional Estimation of Soil Moisture

  • Authors: (Not fully listed)
  • Journal: Hydrology
  • Year: 2024
  • Type: Article – Open Access
  • Citations: 0

8.Title: A Fuzzy Inference Model for Evaluating Data Transfer in LTE Mobile Networks via Crowdsourced Data

  • Authors: (Not fully listed)
  • Journal: Computación y Sistemas
  • Year: 2024
  • Type: Article
  • Citations: 1

9.Title: Computer Model for an Intelligent Adjustment of Weather Conditions Based on Spatial Features for Soil Moisture Estimation

  • Authors: (Not fully listed)
  • Journal: Mathematics
  • Year: 2024
  • Type: Article – Open Access
  • Citations: 4

 

 

Maksym Koghut | Computer Science and Artificial Intelligence | United Kingdom

Dr. Maksym Koghut | Computer Science and Artificial Intelligence | United Kingdom

Lecturer at Manchester Metropolitan University, United Kingdom

Dr. Maksym Koghut is an accomplished academic and researcher at Manchester Metropolitan University Business School, UK, with a robust interdisciplinary background spanning management, engineering, and financial sciences. He holds a PhD in Management from the University of Kent and has taught at several leading UK institutions, delivering modules in digital transformation, blockchain, strategy, and innovation. His research focuses on the strategic implications of digital technologies, inter-organisational trust, and AI in business contexts, with publications in high-quality journals and presentations at prominent international conferences. In addition to his academic credentials, Dr. Koghut brings substantial industry experience through leadership roles in multiple startups across the UK and Ukraine. He is a Fellow of the Higher Education Academy and has been recognized with several academic and teaching awards, reflecting his excellence in both research and pedagogy.

Professional Profile 

🎓 Education of Dr. Maksym Koghut

Dr. Maksym Koghut has pursued a dynamic and interdisciplinary educational journey across the UK and Ukraine. He earned his PhD in Management from the University of Kent (2018–2021), where he developed a strong foundation in strategic management and digital transformation. Prior to that, he completed a BA (Hons) in Business Information Management at the University of Huddersfield (2014–2017), and a BA (Hons) in Financial Management from the Inter-Regional Academy of Personnel Management, Ukraine (2010–2012), highlighting his grounding in both information systems and finance. His academic path began with a BEng (Hons) in Mechanical Engineering from Cherkassy Engineering and Technological Institute, Ukraine (1995–2000), demonstrating a solid technical and analytical base. This unique combination of disciplines enhances his expertise in digital business, innovation, and organizational strategy.

💼 Professional Experience of Dr. Maksym Koghut

Dr. Maksym Koghut brings a wealth of professional experience that bridges academia and industry. He is currently a Lecturer at Manchester Metropolitan University Business School, where he leads and teaches postgraduate and degree apprenticeship modules focused on blockchain, digital transformation, and Industry 4.0. His previous academic roles include lecturing positions at Coventry University London, the University of Kent, and the University of Huddersfield, where he developed and led modules in strategic management, digital information systems, innovation, and entrepreneurship. Beyond academia, Dr. Koghut has a strong entrepreneurial background, having founded and directed several businesses in the UK and Ukraine, including Script Software Ltd (a robotics software company), MotorHood Platform Ltd, and other ventures in automotive services, photography, and industrial equipment. This dual experience in research and real-world business operations uniquely positions him as a thought leader in digital enterprise and innovation.

🔬 Research Interests of Dr. Maksym Koghut

Dr. Maksym Koghut’s research interests lie at the intersection of digital transformation and strategic management in modern business environments. He focuses on the strategic implications of emerging technologies such as blockchain, artificial intelligence, and augmented/extended reality (XR), especially in the context of inter-organisational relationships and digital enterprises. His work explores how social capital, trust, and innovation evolve in digitally networked ecosystems, offering insights into how organisations adapt and thrive amid rapid technological change. Dr. Koghut also investigates consumer behavior in digital settings, including mobile payment discontinuance and AI-generated advertising. His research is both conceptually grounded and practically relevant, contributing to academic scholarship and informing industry practices in the digital age.

🏆 Awards and Honors of Dr. Maksym Koghut

Dr. Maksym Koghut has been recognized multiple times for his outstanding contributions to both research and teaching. He received the “Above & Beyond Award” twice from Kent Business School in 2022 for excellence in teaching at both undergraduate and postgraduate levels. His academic journey has been supported by prestigious scholarships, including the Vice Chancellor’s Research Scholarship from the University of Kent in 2018 and the Vice Chancellor’s Scholarship for PhD Studies from Huddersfield Business School in 2017. Additionally, he was awarded the Strategic Planning Society Prize for being the Best Student in Strategy at Huddersfield Business School in 2017. These honors highlight Dr. Koghut’s consistent excellence, dedication, and impact in the academic and professional communities.

🏁 Conclusion

Dr. Maksym Koghut is a compelling and highly suitable candidate for the Best Researcher Award. He brings together a rich combination of academic excellence, cutting-edge research, teaching innovation, and industry engagement. His interdisciplinary expertise and consistent scholarly output in contemporary digital business themes position him as a thought leader in the digital transformation domain.

📚 Publications Top Noted

  1. Title: A Blockchain-based Inter-organisational Relationships: Social and Innovation Implications
    Authors: Maksym Koghut, Omar Al-Tabbaa, Soo Hee Lee, Martin Meyer
    Year: 2021
    Citation: Academy of Management Proceedings, 2021-08
  2. Title: A Blockchain-based Inter-organisational Relationships: Social and Innovation Implications
    Authors: Maksym Koghut, Omar Al-Tabbaa, Soo Hee Lee, Martin Meyer
    Year: 2021
    Citation: Academy of Management Proceedings, 2021-08
  3. Title: The Effects of Autonomous Contracting on Inter-organisational Relationships: A Process Model of Trust, Social Capital and Value Co-creation
    Authors: Maksym Koghut, Omar Al-Tabbaa, Soo Hee Lee, Martin Meyer
    Year: 2020
    Citation: British Academy of Management Annual Conference, 2020-09-04
  4. Title: The Blockchain-Trust Nexus: A New Era for Inter-organizational Trust Meaning and Formation
    Authors: Maksym Koghut, Omar Al-Tabbaa, Martin Meyer
    Year: 2019
    Citation: Academy of Management Proceedings, 2019-08
  5. Title: Modelling Decentralised Collaboration Between Engineering Teams: A Blockchain-based Solution
    Authors: Maksym Koghut, John Makokha
    Year: 2018
    Citation: VI International Scientific and Technical Conference, 2018-09-01

Raviteja Sista | Computer Science and Artificial Intelligence | Best Researcher Award

Mr. Raviteja Sista | Computer Science and Artificial Intelligence | Best Researcher Award

Research Scholar at Indian Institute of Technology Kharagpur, India

Raviteja Sista is a dynamic and accomplished researcher specializing in Artificial Intelligence, Deep Learning, and Medical Image Analysis. Currently pursuing his Ph.D. at the Indian Institute of Technology Kharagpur with an outstanding GPA of 9.4, he is a recipient of the prestigious Prime Minister’s Research Fellowship. Raviteja holds an MSc in Signal Processing and Communications from the University of Edinburgh and a Bachelor’s in Electronics and Communication Engineering from Osmania University. His research focuses on developing AI-driven frameworks for surgical planning and outcome prediction, with notable contributions to multimodal graph-based learning and surgical video analysis. He has published extensively in top-tier journals such as Medical Image Analysis and Computers in Biology and Medicine, and has actively contributed to international AI challenges and symposia. His technical expertise, academic excellence, and dedication to solving real-world healthcare problems through AI make him a standout figure in the research community.

Professional Profile 

🎓 Education of Raviteja Sista

Raviteja Sista has pursued a stellar academic path marked by excellence and innovation. He is currently enrolled in a Ph.D. program at the Indian Institute of Technology Kharagpur, specializing in Artificial Intelligence at the Centre of Excellence, where he maintains an impressive GPA of 9.4/10. Prior to this, he earned his Master of Science in Signal Processing and Communications with Distinction from the University of Edinburgh (2019–2020). His foundational engineering training was completed with a Bachelor of Engineering in Electronics and Communication from M.V.S.R. Engineering College, affiliated with Osmania University, where he secured a remarkable 85.34%. Raviteja also boasts an outstanding academic record from his early years, achieving 94.6% in Intermediate studies at Narayana Junior College and a CGPA of 9.8/10 in Class X from Lotus National School, Hyderabad.

💼 Professional Experience of Raviteja Sista

Raviteja Sista has a well-rounded professional background that bridges academia, research, and industry. He is currently a Teaching Assistant at IIT Kharagpur, where he supports academic instruction in AI and deep learning. Over the years, he has held teaching roles at several institutions including SRKR Engineering College, CSI Wesley Institute of Technology, Assam Down Town University, and JNTU Kakinada, demonstrating his commitment to education and knowledge dissemination. Complementing his academic roles, Raviteja also gained valuable industry experience as an Associate Software Developer Intern at Accenture Solutions Pvt. Ltd. and through multiple internships at Defence Research and Development Laboratory (DRDL), Hyderabad. His professional journey reflects a strong blend of research, software development, and teaching expertise, all anchored in the field of artificial intelligence and signal processing.

🔬 Research Interests of Raviteja Sista

Raviteja Sista’s research interests lie at the intersection of artificial intelligence and healthcare, with a strong focus on applying deep learning techniques to complex real-world problems. His core areas of interest include Deep Learning, Medical Image Analysis, Digital Signal Processing, Image Processing, Artificial Intelligence, and Design of Algorithms. He is particularly passionate about developing AI-powered systems for surgical planning and automation, leveraging multimodal data, graph neural networks, and computer vision. His work aims to enhance patient safety, improve clinical outcomes, and drive innovation in intelligent medical systems. Raviteja’s commitment to impactful, interdisciplinary research is evident in his projects and publications, which bridge technical depth with healthcare relevance.

🏅 Awards and Honors of Raviteja Sista

Raviteja Sista has been recognized with several prestigious awards and honors that highlight his academic brilliance and research potential. Most notably, he was awarded the Prime Minister’s Research Fellowship (PMRF) in 2022, one of India’s most esteemed research fellowships supporting exceptional doctoral scholars. He also earned a Certificate of Merit for completing the “Advanced Certification in Artificial Intelligence and Machine Learning” from IIIT Hyderabad in 2019. Additionally, Raviteja demonstrated national-level academic excellence by ranking in the Top 3% among over 1 lakh candidates in GATE 2019, a highly competitive examination for engineering graduates in India. These accolades reflect his consistent pursuit of excellence and his growing reputation as a promising researcher in the field of artificial intelligence.

🧾 Conclusion 

Sista Raviteja stands out as a highly qualified, technically accomplished, and visionary researcher in AI for healthcare. With strong academic credentials, impactful projects, respected publications, and active involvement in the scientific community, he demonstrates clear potential for leadership in scientific research.Despite minor areas of potential growth in independent authorship and translational work, his contributions already meet and, in some cases, exceed the typical benchmarks for the Best Researcher Award.

📚 Publications Top Noted

  1. Title: Deep neural hashing for content-based medical image retrieval: A survey
    Authors: A. Manna, R. Sista, D. Sheet
    Journal: Computers in Biology and Medicine, Volume 196, Article 110547
    Year: 2025
    Citations:
  2. Title: Artificial Intelligence (AI)–Based Model for Prediction of Adversity Outcome Following Laparoscopic Cholecystectomy—a Preliminary Report
    Authors: R. Agrawal, S. Hossain, H. Bisht, R. Sista, P.P. Chakrabarti, D. Sheet, U. De
    Journal: Indian Journal of Surgery, Volume 87 (1), Pages 52–59
    Year: 2025
    Citations: 1
  3. Title: Exploring the Limits of VLMs: A Dataset for Evaluating Text-to-Video Generation
    Authors: A. Srivastava, R. Sista, P.P. Chakrabarti, D. Sheet
    Conference: Indian Conference on Computer Vision Graphics and Image Processing (ICVGIP)
    Year: 2024
    Citations:
  4. Title: SimCol3D—3D reconstruction during colonoscopy challenge
    Authors: A. Rau, S. Bano, Y. Jin, P. Azagra, J. Morlana, R. Kader, E. Sanderson, …, R. Sista
    Journal: Medical Image Analysis, Volume 96, Article 103195
    Year: 2024
    Citations: 16
  5. Title: CholecTriplet2022: Show me a tool and tell me the triplet—An endoscopic vision challenge for surgical action triplet detection
    Authors: C.I. Nwoye, T. Yu, S. Sharma, A. Murali, D. Alapatt, A. Vardazaryan, K. Yuan, …, R. Sista
    Journal: Medical Image Analysis, Volume 89, Article 102888
    Year: 2023
    Citations: 29
  6. Title: CholecTriplet2021: A benchmark challenge for surgical action triplet recognition
    Authors: C.I. Nwoye, D. Alapatt, T. Yu, A. Vardazaryan, F. Xia, Z. Zhao, T. Xia, F. Jia, …, R. Sista
    Journal: Medical Image Analysis, Volume 86, Article 102803
    Year: 2023
    Citations: 61
  7. Title: CholecTriplet2022: Show me a tool and tell me the triplet—An endoscopic vision challenge for surgical action triplet detection
    Authors: C.I. Nwoye, T. Yu, S. Sharma, A. Murali, D. Alapatt, A. Vardazaryan, …, R. Sista
    Repository: arXiv, arXiv:2302.06294
    Year: 2023
    Citations:
  8. Title: I’m GROOT: a multi head multi GRaph netwOrk recognizing surgical actiOn Triplets
    Authors: R. Sista, R. Sathish, R. Agrawal, U. De, P.P. Chakrabarti, D. Sheet
    Conference: ICVGIP 2022
    Year: 2022
    Citations: 1
  9. Title: CholecTriplet2021: A benchmark challenge for surgical action triplet recognition
    Authors: C.I. Nwoye, D. Alapatt, T. Yu, A. Vardazaryan, F. Xia, Z. Zhao, …, R. Sista
    Repository: arXiv, arXiv:2204.04746
    Year: 2022
    Citations: 1
  10. Title: I’m GROOT: a multi head multi GRaph netwOrk recognizing surgical actiOn Triplets
    Authors: S. Raviteja, R. Sathish, R. Agrawal, U. De, P.P. Chakrabarti, D. Sheet
    Conference: ICVGIP
    Year: 2022
    Citations:
  11. Title: Challenges of Decomposing Tools in Surgical Scenes Through Disentangling The Latent Representations
    Authors: S.L. Gorantla, R. Sista, A. Srivastava, U. De, P.P. Chakrabarti, D. Sheet
    Workshop: ICLR Workshop on Challenges in Applied Deep Learning (ICBNB)
    Year: 2025 (Accepted)
    Citations:

 

Shuai Cao | Computer Science and Artificial Intelligence | Best Researcher Award

Shuai Cao | Computer Science and Artificial Intelligence | Best Researcher Award

Dr Shuai Cao, School of Automation, Wuhan University of Technology, China

Dr. Shuai Cao is a dynamic researcher in the field of Computational Intelligence, currently pursuing graduate studies at Kunming University of Science and Technology and engaging in joint research at the Guangdong Academy of Sciences. With a focus on enhancing meta-heuristic algorithms, Dr. Cao has contributed significantly to engineering optimization, especially in AGV path planning and offset printing machine design. He is the mind behind the innovative Piranha Foraging Optimization Algorithm (PFOA) and co-author of several impactful SCI/EI publications. His expertise in algorithm improvement, machine learning, and pattern recognition is reflected through funded projects and hands-on roles in top research institutions like the South China Intelligent Robot Innovation Institute. With a remarkable blend of theoretical insight and practical application, Dr. Cao is a promising candidate for the Best Researcher Award, embodying academic rigor and real-world impact.

Publication Profile 

Orcid

Education

Dr. Shuai Cao’s academic journey began at Baotou Rare Earth High-tech No. 1 High School (2014–2017), where he laid a strong foundation in the sciences. He pursued his undergraduate degree in Mechanical and Electronic Engineering at Chongqing University of Humanities, Science and Technology (2017–2021), gaining critical insights into systems design and robotics. Since 2021, he has been a postgraduate student in Electronic Information at Kunming University of Science and Technology, further sharpening his expertise in computational theory and algorithmic systems. Complementing his studies, Dr. Cao has been engaged in a joint training program at the Intelligent Manufacturing Institute of the Guangdong Academy of Sciences since 2022. His coursework includes meta-heuristic algorithms, machine learning, digital signal processing, and pattern recognition, all of which feed directly into his research in Computational Intelligence and engineering optimization. His interdisciplinary background empowers him to tackle complex problems with innovative solutions.

Experience

Dr. Shuai Cao has held impactful roles in prestigious research institutions. From May 2022 to July 2023, he worked at the Intelligent Manufacturing Institute of the Guangdong Academy of Sciences, where he conducted advanced research on AGV handling robots. This included applying improved intelligent algorithms for path planning and optimization scheduling—work closely aligned with his master’s thesis. Since July 2023, he has been with the South China Intelligent Robot Innovation Institute, applying swarm intelligence methods to optimize the structure of high-speed multi-color offset printing machines. Dr. Cao’s work integrates theoretical research with industrial application, setting a benchmark for practical relevance. His involvement in key science and innovation projects also reflects his growing leadership in the field. From optimization algorithms to real-world robotic systems, Dr. Cao’s hands-on approach is shaping the future of intelligent manufacturing.

Awards and Honors

Dr. Shuai Cao has earned distinguished recognition in both academic and research circles for his innovative contributions to engineering optimization. As a lead researcher on multiple government-funded projects—including “Research and Application of Intelligent Scheduling of Mobile Collaborative Robot Clusters for Intelligent Manufacturing” (Project Code: 2130218003022) and the “Foshan Science and Technology Innovation Team Project” (Project Code: FS0AA-KJ919-4402-0060)—he has demonstrated expertise in bridging theory with practical industrial solutions. His pioneering research has been published in high-impact SCI and EI journals and conferences, such as IEEE ACCESS and the International Conference on Robotics and Automation Engineering (ICRAE). A highlight of his work is the development of the Piranha Foraging Optimization Algorithm (PFOA), which has garnered considerable attention in the optimization community for its novelty and effectiveness. Dr. Cao’s sustained dedication to cutting-edge innovation, along with his leadership in collaborative, cross-disciplinary projects, makes him a compelling nominee for the Best Researcher Award.

Research Focus

Dr. Shuai Cao’s research is centered on Computational Intelligence, specifically the improvement and engineering application of swarm intelligence algorithms. His work addresses key challenges in traditional optimization methods, such as premature convergence, low population diversity, and slow optimization speeds. He has successfully designed algorithms that overcome these limitations, notably the Piranha Foraging Optimization Algorithm (PFOA). His research extends to practical applications like automated guided vehicle (AGV) path planning, scheduling in smart factories, and mechanical structure optimization for high-speed printing systems. Through interdisciplinary methods, he combines machine learning, pattern recognition, and digital signal processing to bring theoretical advancements into real-world manufacturing challenges. With a clear aim of enhancing intelligent manufacturing systems, his research contributes to both academic knowledge and industrial innovation. His growing body of work reflects originality, technical rigor, and a strong alignment with modern engineering demands.

Publication Top Notes

 

Inga Christina Miadowicz | Computer Science and Artificial Intelligence | Best Researcher Award

Inga Christina Miadowicz | Computer Science and Artificial Intelligence | Best Researcher Award

Mrs Inga Christina Miadowicz, Deutsches Zentrum für Luft- und Raumfahrt, Germany

Dr. Inga Christina Miadowicz is a dedicated researcher specializing in IT management, industrial autonomy, and solar energy systems. She holds a Master’s in IT-Management from FOM Mannheim and a Bachelor’s in Applied Computer Science from DHBW Mannheim. Currently a Research Assistant at Deutsches Zentrum für Luft- und Raumfahrt (DLR), she leads projects in autonomous solar power plants and cyber-physical system infrastructures. Her expertise spans software engineering, distributed systems, and performance optimization. As a university lecturer at DHBW Mannheim, she teaches advanced software engineering and distributed systems. Her contributions to solar power plant digitization, industrial autonomy, and energy management have been published in renowned journals and conferences. She is an active participant in cutting-edge research on 5G communication for solar plants. With a strong foundation in IT architecture, cloud computing, and SAP technologies, she continues to drive innovation in the field of renewable energy and digital transformation. 🔬☀️🚀

Publication Profile

Orcid

Education

Dr. Inga Christina Miadowicz has a solid academic background in IT management and applied computer science. She earned her Master of Science in IT-Management (2018-2021) from Fachhochschule für Oekonomie und Management (FOM), Mannheim, where she specialized in enterprise IT strategies and digital transformation. Her Bachelor of Science in Applied Computer Science (2013-2016) from Duale Hochschule Baden-Württemberg (DHBW), Mannheim, provided her with hands-on experience in software development, system architecture, and distributed computing. She completed her Abitur (2004-2013) at Theodor-Fliedner-Gymnasium, Düsseldorf, establishing a strong foundation in STEM disciplines. Her commitment to continuous learning is reflected in multiple professional certifications, including Certified Business Professional and Certified Solution Professional (FICO), as well as specialized training in Apache Kafka, SAP HANA, SAPUI5, and OData services. Through her graduate program at DLR (since 2022), she continues to enhance her expertise in advanced IT solutions for industrial applications. 📚💡

Experience

Dr. Inga Christina Miadowicz has extensive experience in IT research, software development, and teaching. Since April 2022, she has been a Research Assistant at DLR (Cologne, Germany), leading projects on autonomous solar power plants and industrial autonomy. She has also served as a university lecturer at DHBW Mannheim (since 2018), teaching distributed systems and software engineering. Previously, she was a Lead Developer at FICO (2019-2022), where she developed anti-money laundering software and optimized performance engineering tools. As a Development Consultant at Slenderiser GmbH (2018-2019), she contributed to SAP S/4HANA transformations. Her tenure at SAP SE (2016-2018) focused on cloud and on-premise solutions for consumer industries. She also gained experience as a Dual Studies developer at ALDI SÜD (2013-2016), working on web and cloud computing solutions. Her diverse expertise in cyber-physical systems, SAP development, and IT architecture makes her a leading researcher in the field. 🚀🌞

Awards and Honors

Dr. Inga Christina Miadowicz has been recognized for her contributions to IT management, software engineering, and renewable energy research. She was awarded the Chinese Government Scholarship for her exceptional academic achievements. Her graduate program at DLR is a testament to her dedication to cutting-edge industrial research. She has received multiple professional certifications, including Certified Business Professional and Certified Solution Professional (FICO), as well as specialized SAP certifications like C_FIORIDEV_20. Her work on autonomous solar power plants and 5G communication for solar plants has been featured at prestigious conferences like SolarPACES. Her performance engineering contributions at FICO helped optimize anti-money laundering software, earning industry recognition. As a university lecturer, she has mentored numerous students in software development and distributed systems. Her commitment to research, education, and technological advancement positions her as a strong candidate for the Best Researcher Award. 🎖️📡☀️

Research Focus

Dr. Inga Christina Miadowicz focuses on industrial autonomy, digital transformation, and renewable energy optimization. At DLR, she leads research on autonomous solar power plants, developing cyber-physical systems and AI-driven automation for power plant operations. Her work integrates 5G communication networks with solar tower plants, enhancing real-time data processing and remote control capabilities. She specializes in distributed systems, software engineering, and cloud-based industrial solutions, particularly in SAP S/4HANA, Fiori applications, and performance engineering. Her research extends to data-driven hardware sizing tools, automation frameworks, and performance optimization for large-scale infrastructure. Her expertise in cybersecurity, IT architecture, and advanced analytics enables her to drive innovation in industrial digitalization. Through her publications in Solar Energy Advances and SolarPACES Conference Proceedings, she contributes to the advancement of solar energy integration and digital infrastructure for smart grids. Her work bridges the gap between IT, industrial automation, and sustainable energy solutions. 🌞📊💡

Publication Top Notes

📄 An Action Research Study on the Digital Transformation of Concentrated Solar Thermal PlantsSolar Energy Advances (2025)
📄 An Action Research Study on the Digital Transformation of Concentrated Solar Thermal PlantsSolar Energy Advances (2024-11-19)
📄 5G as Communication Platform for Solar Tower PlantsSolarPACES Conference Proceedings (2024-07-24)
📄 5G as Communication Platform for Solar Tower PlantsSolarPACES Conference Proceedings (2024-07-24, DOI: 10.52825/solarpaces.v2i.858)
📄 5G as Communication Platform for Solar Tower Plants29th International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2023

Duantengchuan Li | Computer Science and Artificial Intelligence | Best Researcher Award

Duantengchuan Li | Computer Science and Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr Duantengchuan Li, School of Information Management, Wuhan University, Wuhan, China, Cahina

Assoc. Prof. Dr. Duantengchuan Li is a distinguished researcher at the School of Information Management, Wuhan University, China 🎓. His expertise spans Recommender Systems, Knowledge Graphs, Reinforcement Learning, Autonomous Driving, Large Language Models, and Computer Vision 🤖📊. With 40+ publications in top-tier journals and conferences such as IEEE TKDE, ACM TWEB, and AAAI 📜, Dr. Li has earned over 800 citations on Google Scholar 🌍. He has served as a Guest Editor for Electronics and a reviewer for premier journals, including IEEE TNNLS, IEEE TII, and Information Sciences 📝. Dr. Li’s impactful research contributions in AI and machine learning make him a leading expert in the field 🚀. His achievements include multiple national and provincial scholarships and a Bronze Medal in the “Internet+” Competition 🏅. His commitment to advancing AI-driven solutions for real-world applications makes him a strong candidate for the Best Researcher Award 🌟.

Publication Profile

Google Scholar

Education

Dr. Duantengchuan Li holds a Ph.D. in Computer Science from Wuhan University, China 🎓, where he specialized in AI-driven Recommender Systems and Knowledge Graphs 🤖📊. Prior to his Ph.D., he earned a Master’s degree from the Faculty of Artificial Intelligence in Education, Central China Normal University 🏫. His academic journey began with a Bachelor’s degree in Computer Science, where he honed his skills in machine learning, deep learning, and computational intelligence 💻. Throughout his education, he actively engaged in cutting-edge research and contributed to high-impact publications 📜. His strong academic foundation has paved the way for groundbreaking work in large-scale AI applications and intelligent systems 🚀. With an outstanding academic record and multiple scholarships, Dr. Li has established himself as a leading AI researcher, dedicated to advancing computational intelligence, knowledge-based systems, and deep learning architectures 🏆.

Experience

Dr. Duantengchuan Li is currently an Associate Researcher at the School of Information Management, Wuhan University, China 🏫. He has extensive experience in artificial intelligence, knowledge graphs, recommender systems, and deep learning 🤖. Dr. Li has been actively involved in academic publishing, serving as a Guest Editor for Electronics and as a reviewer for prestigious journals like IEEE TKDE, ACM TKDD, and IEEE TNNLS 📝. His research has been featured in top CCF A & B-ranked journals and conferences, including AAAI, ICWS, CAiSE, and IEEE Transactions 📊. Before joining Wuhan University, he completed his Ph.D. in Computer Science, contributing to AI-driven recommendation models 💡. His expertise extends to autonomous driving, reinforcement learning, and computer vision, and he continues to mentor young researchers in AI applications 🚀. His contributions in intelligent computing and AI research have made him a leading figure in his field 🌍.

Awards & Honors

Dr. Duantengchuan Li has received numerous accolades for his contributions to AI and computer science 🏆. In 2023, he led a team to win the Bronze Award in the prestigious “Internet+” Competition 🏅. His academic excellence was recognized with the National Scholarship (2019) 🎓 and the Provincial Outstanding Graduate Award (2017) 🏅. Additionally, he was honored with the Provincial Government Scholarship (2015) for his outstanding performance in research and academics 📜. Dr. Li also holds a Network Engineer Qualification Certification (2016), further demonstrating his technical expertise 💻. His contributions in AI research, particularly in deep learning, recommender systems, and autonomous driving, have earned him a spot among China’s top researchers 🚀. With 40+ high-impact publications and 800+ citations, Dr. Li’s work continues to shape the future of artificial intelligence and machine learning 🌟.

Research Focus

Dr. Duantengchuan Li’s research primarily focuses on Recommender Systems, Knowledge Graphs, Reinforcement Learning, Large Language Models, Autonomous Driving, and Computer Vision 🤖📊. His work explores efficient AI-driven recommendations, leveraging graph neural networks, deep learning, and sequential modeling to improve information retrieval 📜. He has also contributed to structured output evaluation for Large Language Models (LLMs), optimizing their prompt engineering and reasoning capabilities 💡. In autonomous driving, his research enhances intelligent vehicle navigation using deep reinforcement learning 🚗. Additionally, he has developed advanced cold-start QoS prediction models and multi-relation modeling for personalized recommendations 🔍. His work has been published in IEEE TKDE, ACM TOSEM, AAAI, and Information Sciences, demonstrating his cutting-edge innovations in AI applications 🚀. By integrating machine learning, knowledge graphs, and neural networks, Dr. Li continues to advance intelligent computing solutions for real-world problems 🌍.

Publication Top Notes

MFDNet: Collaborative poses perception and matrix Fisher distribution for head pose estimation

EDMF: Efficient deep matrix factorization with review feature learning for industrial recommender system

Multi-perspective social recommendation method with graph representation learning

CARM: Confidence-aware recommender model via review representation learning and historical rating behavior in the online platforms

Knowledge graph representation learning with simplifying hierarchical feature propagation

Knowledge graph representation learning with simplifying hierarchical feature propagation

Precise head pose estimation on HPD5A database for attention recognition based on convolutional neural network in human-computer interaction

Integrating user short-term intentions and long-term preferences in heterogeneous hypergraph networks for sequential recommendation

 

Ioannis Deliyannis | Computer Science and Artificial Intelligence | Excellence in Research Award

Ioannis Deliyannis | Computer Science and Artificial Intelligence | Excellence in Research Award

Prof Ioannis Deliyannis, Ionian University, Greece

Dr. Ioannis Deliyannis, with his extensive research and innovative contributions, seems like an ideal candidate for the Research for Excellence in Research Award. His publications span diverse topics in interactive multimedia, virtual reality, and serious games, often focusing on technology‘s role in education and sensory experience. Here’s a breakdown of his achievements that demonstrate his suitability for this award:

Publication profile

google scholar

Excellence in Research and Innovation

Dr. Deliyannis has made significant contributions to interactive multimedia systems, with a focus on creative and experimental technologies. His research ranges from the development of educational and multi-sensory games to applications in virtual and augmented reality, areas known for innovation and societal impact.

Impact of Research

Dr. Deliyannis’s research addresses emerging concerns, such as ethical issues in VR, game-based learning, and the potential of mobile sensory systems to enhance interactive experiences. His work on serious games for education demonstrates both academic impact and practical applications.

Collaboration and Leadership

As a founding member of the inArts research lab, Dr. Deliyannis has demonstrated leadership in research collaborations, producing impactful work in the multimedia field and creating frameworks for augmented reality in archaeological environments, which blends technology with cultural preservation.

Virtual Reality and Ethical Concerns (2021)

In this publication, Deliyannis co-authors a systematic review of ethical issues and concerns surrounding the use of virtual reality applications, particularly focusing on their potential risks to children and adolescents. This work highlights his focus on the social impacts of emerging technologies.

Barriers in Digital Game-Based Learning (2021)

This research investigates the challenges faced by pre-service teachers when implementing digital game-based learning in classrooms. Deliyannis’ focus on practical education technologies demonstrates his contribution to bridging the gap between theoretical knowledge and classroom implementation.

Game Design and Intelligent Interaction (2020)

As the editor of this book, Deliyannis explores the integration of intelligent interaction in game design, positioning himself at the forefront of research on user experience and the development of interactive systems.

From Interactive to Experimental Multimedia (2012)

In this earlier work, Deliyannis explores the transition from interactive to experimental multimedia, which reflects his innovative approach to developing cutting-edge multimedia systems and intelligent design methodologies.

Serious Games Evaluation Scale (2019)

This publication validates a scale that allows players to evaluate serious games, showcasing his contribution to the development of tools for analyzing the effectiveness of educational games.

Learning Effectiveness in Serious Games (2019)

Deliyannis’ research investigates factors influencing the learning effectiveness of serious games, contributing to the understanding of motivation and pedagogical outcomes in technology-enhanced learning.

Digital Scent Technology and the Metaverse (2022)

In this study, Deliyannis examines digital scent technology and its potential applications in the metaverse, further demonstrating his engagement with the latest technological advancements.

Augmented Reality in Archaeological Environments (2014)

He co-authored a framework for augmented reality in archaeology, contributing to both technological innovation and cultural preservation.

Smart Pedagogy and Motivation (2019)

Deliyannis’ work explores the role of motivation in smart pedagogy, further emphasizing his contributions to enhancing learning environments through technological innovation.

Interactive Multimedia for Science (2011)

In this earlier work, Deliyannis developed interactive multimedia systems, demonstrating his long-standing commitment to the use of multimedia technologies in education.

Conclusion

Dr. Ioannis Deliyannis’ diverse and impactful contributions to interactive multimedia systems, serious games, virtual reality, and education technologies make him a strong candidate for the Research for Excellence in Research Award. His work is not only innovative but also deeply concerned with societal and educational impacts, positioning him as a leader in his field.

Publication top notes

Could virtual reality applications pose real risks to children and adolescents? A systematic review of ethical issues and concerns

Potential Barriers to the Implementation of Digital Game-Based Learning in the Classroom: Pre-service Teachers’ Views

Game Design and Intelligent Interaction

From Interactive to Experimental Multimedia

Let players evaluate serious games. Design and validation of the Serious Games Evaluation Scale

Factors influencing the subjective learning effectiveness of serious games

Digital scent technology: Toward the internet of senses and the metaverse

Augmented Reality for Archaeological Environments on mobile devices: a novel open framework

Yasin Fatemi | Computer Science and Artificial Intelligence | Best Researcher Award

Yasin Fatemi | Computer Science and Artificial Intelligence | Best Researcher Award

Mr Yasin Fatemi, Auburn University, United States

Based on the details provided, Mr. Yasin Fatemi is a highly suitable candidate for a Researcher of the Year Award.

Publication profile

google scholar

Educational Background 📚

Mr. Fatemi has a robust academic foundation with a Ph.D. in Industrial and Systems Engineering from Auburn University, where he has maintained a perfect GPA of 4.0. His ongoing M.Sc. in Data Science further complements his expertise, and he also holds an M.Sc. and B.Sc. in Industrial and Systems Engineering from Tarbiat Modares University and the University of Kurdistan, respectively. This diverse and interdisciplinary educational background supports his innovative research in healthcare and systems optimization.

Research Experience and Contributions 🔬

Mr. Fatemi’s research is both extensive and impactful. His recent work involves using machine learning and network analysis to address critical healthcare issues such as low birth weight prediction, racial disparities in maternal outcomes, and cardiovascular death among liver transplant recipients. These projects showcase his ability to apply advanced analytical methods to real-world problems, significantly contributing to the fields of healthcare and data science. His studies have utilized cutting-edge techniques such as Recursive Feature Elimination, SHapley Additive exPlanations (SHAP), and network feature analysis, highlighting his technical prowess and innovation.

Publications and Academic Output 📝

Mr. Fatemi has authored several peer-reviewed articles, contributing to reputable journals like Frontiers in Public Health and Journal of Multidisciplinary Healthcare. His research on the stress and compensation perceptions of frontline nurses during the COVID-19 pandemic, as well as his work on hospital smart notification systems, demonstrates his commitment to improving healthcare environments and outcomes. His publications reflect his ability to tackle diverse and pressing issues, making him a significant contributor to the academic community.

Technical and Academic Skills 🛠️

Mr. Fatemi’s technical skills are impressive, encompassing data analysis tools like Python, R, and SQL, and specialized software for simulation and optimization. His expertise in machine learning, statistical learning, and network analysis is evident in his research outputs, further establishing his credibility as an innovative researcher.

Conclusion

Mr. Yasin Fatemi’s strong educational background, extensive research experience, and impactful contributions to healthcare and data science make him an excellent candidate for a Best Researcher Award. His ability to apply complex analytical techniques to critical issues in healthcare and his consistent academic excellence underscore his suitability for this recognition.

Publication top notes

Investigating frontline nurse stress: perceptions of job demands, organizational support, and social support during the current COVID-19 pandemic

Listening to the Voice of the hospitalized child: comparing children’s experiences to their parents

The Cost of Frontline Nursing: Investigating Perception of Compensation Inadequacy During the COVID-19 Pandemic

ChatGPT in Teaching and Learning: A Systematic Review

Machine Learning Approach for Cardiovascular Death Prediction among Nonalcoholic Steatohepatitis (NASH) Liver Transplant Recipients

Evaluating a Hospital Smart Notification System in a Simulated Environment: The Method

Machine Learning Approaches for Cardiovascular Death Prediction Among Nash Liver Transplant Recipients