Rongshun Chen | Engineering and Technology | Best Researcher Award

Prof. Rongshun Chen | Engineering and Technology | Best Researcher Award

Prof. Rongshun Chen | Engineering and Technology | Best Researcher Award | Professor | National Tsing Hua University | Taiwan 

Prof. Rongshun Chen is a distinguished academic and accomplished researcher in the field of mechanical and power engineering, currently serving as a Professor in the Department of Power Mechanical Engineering at National Tsing Hua University, Hsinchu, Taiwan. Prof. Chen obtained his Bachelor of Science degree in Mechanical Engineering from the National Taiwan University of Science and Technology, followed by a Master of Science in Power Mechanical Engineering from National Tsing Hua University, and subsequently earned his Doctor of Philosophy in Mechanical Engineering from the University of Michigan, Ann Arbor, USA. Throughout his extensive academic career, Prof. Chen has made significant contributions to the advancement of robotics, control systems, and thermal management technologies, with a focus on developing intelligent sensing mechanisms, adaptive control, and mechatronic system integration. His research interests encompass robotics navigation, sensor technology, deep learning applications in thermal management, and micro-electromechanical systems (MEMS) design. Prof. Chen’s expertise extends across several domains of applied mechanics and computational modeling, enabling the development of efficient systems for industrial automation and energy-efficient engineering applications. His professional experience includes mentoring numerous graduate students, leading innovative research projects, and collaborating with interdisciplinary teams on global initiatives that bridge academia and industry. Prof. Chen has consistently demonstrated outstanding research skills in designing hybrid solvers for multi-agent motion control, developing dual-mode tactile sensors, and implementing deep learning models for predictive thermal management in data centers. His scholarly work has been published in high-impact journals and presented at major international conferences such as IEEE and Elsevier platforms, earning recognition for scientific rigor and innovation. A committed educator and leader, Prof. Chen is also an active member of the IEEE and has served in multiple academic and technical committees, contributing to the broader engineering research community. He has received numerous honors for his outstanding teaching and research achievements and continues to inspire through his leadership in robotics and thermal control engineering. Prof. Rongshun Chen’s career embodies the synergy of technical mastery, visionary thinking, and a lifelong dedication to advancing engineering science for societal benefit. His academic influence, publication record, and international collaborations firmly establish him as a leading scholar committed to advancing the future of intelligent mechanical systems and sustainable innovation through research excellence and mentorship.

Profile: Scopus | Google Scholar

Featured Publications

  1. Chen, R. (2022). Wearable and wireless performance evaluation system for sports science with an example in badminton. Scientific Reports. 7 citations.

  2. Chen, R. (2023). A Dual Spiral-Coils Tactile Sensor with Novel Driving Modes for Inductive Force and Capacitive Proximity Sensing. Conference Paper. 3 citations.

  3. Chen, R. (2023). Implementation of a Monolithic SoC Environmental Sensing Hub Using CMOS-MEMS Technique. Conference Paper. 1 citation.

  4. Chen, R. (2023). Collision-Free Navigation for Multiple Robots in Dynamic Environment. Conference Paper. 2 citations.

  5. Chen, R. (2023). Rack Inlet Temperature Prediction Based on Deep Learning. Conference Paper. 5 citations.

  6. Chen, R. (2023). A Dual Sensing Modes Capacitive Tactile Sensor for Proximity and Tri-Axial Forces Detection. Conference Paper. 12 citations.

 

Mohammad Ansar Vakkattil | Advanced Materials Engineering | Cross-disciplinary Excellence Award

Mohammad Ansar Vakkattil | Advanced Materials Engineering | Cross-disciplinary Excellence Award

Mr Mohammad Ansar Vakkattil, FHNW, India

Mr. Mohammad Ansar Vakkattil is a dynamic interdisciplinary researcher whose work bridges polymer science, biomedical engineering, and 3D bioprinting. With a solid foundation in Rubber and Polymer Technology from premier Indian institutions like IIT Kharagpur and CUSAT, he has contributed significantly to intelligent materials, medical devices, and bioremediation. His roles as Senior Project Engineer at SCTIMST and researcher at institutions in Switzerland and Estonia reflect his global engagement. His pioneering work on smart materials and 3D-printed implantables, like cranioplasty scaffolds, showcases his innovation at the intersection of healthcare, materials science, and sustainability. With a flair for EU grant writing and multilingual expertise, he embodies the spirit of collaborative, cross-domain research. Through academic supervision, teaching, and publication, Mr. Vakkattil continues to inspire a new generation of material scientists and bioengineers worldwide.

Publication Profile

Google Scholar

Orcid

Education

Mr. Ansar earned his M.Tech in Rubber Technology from the Rubber Technology Centre, IIT Kharagpur, with a CGPA of 8.02/10, supported by a prestigious GATE scholarship. His thesis focused on castor oil extended epoxidised natural rubber, emphasizing sustainable material innovation. He completed his B.Tech in Polymer Science and Engineering from Cochin University of Science and Technology (CUSAT) with a CGPA of 7.23/10. His academic projects and thesis explored topics such as SBR-tire compounds and mechanical properties of latex films, grounding him in applied polymer engineering. Further technical training at the Indian Rubber Board and multiple industrial internships enriched his hands-on expertise in polymer processing, rubber compounding, and materials testing. His academic journey reflects not only intellectual merit but also a strategic focus on sustainable, biomedical, and smart material innovations.

Experience

Mr. Ansar’s professional experience reflects a blend of academic research and applied engineering. He served as a Senior Project Engineer at Sree Chitra Tirunal Institute for Medical Sciences and Technology, where he contributed to the development of Parylene coatings for implantable medical devices. At the University of Tartu and University of Applied Sciences Northwestern Switzerland, he specialized in 3D printing of artificial muscles and bioprinting for bioremediation. His skills span FDM, SLA, electrospinning, ceramic nanoparticles, and hydrogel synthesis. In addition to his lab work, he has acted as a supervisor, educator, and EU project contributor. His roles demonstrate advanced proficiency in additive manufacturing, smart biomaterials, and digital fabrication—key areas shaping future biomedical and environmental technologies.

Awards and Honors

Mr. Ansar’s academic and professional excellence has been consistently recognized. He was awarded the GATE Masters Scholarship (2016–2018) and achieved an All India Rank of 32 in the GATE Polymer Science and Material Science category. He was the Runner-Up in the Brand D Management Competition during Spring Fest at IIT Kharagpur in 2017. He has also earned accolades for multiple poster presentations, including on biomedical coatings and sustainable rubber materials, at IRMRA and other prestigious platforms. These honors underscore his creativity, technical acumen, and capacity to translate theoretical knowledge into impactful innovations. His teaching merits and development of study materials for GATE aspirants further reflect his commitment to academic excellence and mentorship in polymer sciences.

Research Focus

Mr. Ansar’s research focuses on intelligent materials, additive manufacturing (3D printing), and biomaterials for medical and environmental applications. His work integrates polymer science, smart textiles, hydrogel-based systems, electrospun materials, and bioprinting technologies for creating actuators, biomedical implants, and sustainable filtration systems. Notably, he has investigated bioprinting for bioremediation, parylene coatings for implants, and artificial muscles using FDM and photopolymer techniques. His interdisciplinary approach, combining biopolymer engineering, chemical vapor deposition, and cytocompatibility testing, has led to novel insights in the development of responsive materials and devices. His goal is to bridge the gap between ecological sustainability and human health by advancing customizable, low-impact technologies in the polymer and medical materials domain.

Publication Top Notes