Mehdi Shanbedi | Engineering and Technology | Best Researcher Award

Assist. Prof. Dr Mehdi Shanbedi | Engineering and Technology | Best Researcher Award

Assist. Prof. Dr Mehdi Shanbedi | Engineering and Technology | Best Researcher Award | Chemical Engineering Department | Kherad Institute of Higher Education | Iran

Assist. Prof. Dr Mehdi Shanbedi is a distinguished chemical engineering researcher whose work spans advanced nanomaterials, nanofluid engineering, heat and mass transfer, microfluidics, biotechnology, and desalination systems, establishing Him as a leading figure in multidisciplinary materials science and thermal-fluid research. He holds a Ph.D. in Chemical Engineering from Ferdowsi University of Mashhad, where His doctoral research focused on synthesizing nanofluids based on covalently and non-covalently functionalized carbon nanostructures for advanced heat transfer applications. His academic foundation further includes an M.Sc. in Chemical Engineering from the same institution and a B.Sc. from Azad University of Gachsaran, forming a strong technical base for His later scientific contributions. Professionally, Assist. Prof. Dr Mehdi Shanbedi has served as an Assistant Professor at Kherad Institute of Higher Education, contributing extensively to postgraduate education through courses in advanced heat transfer, thermodynamics, fluid mechanics, reactor design, and engineering mathematics. Beyond academia, He co-founded Vira Carbon Nano Materials (VCN Materials) Co. Ltd., spearheading innovations in nanomaterial production and industrial applications. His research interests include the synthesis and functionalization of graphene, MXene, carbon nanotubes, and quantum dots; development of high-performance nanofluids for enhanced heat transfer; desalination engineering; biofluid dynamics; antimicrobial materials; and energy-storage-related advanced materials. His research skills cover experimental and numerical modeling of thermal and hydrodynamic systems, nanostructure fabrication, material characterization, fluid–structure analysis, and biotechnology techniques including microbial studies and biomolecule extraction. Assist. Prof. Dr Mehdi Shanbedi has supervised and co-supervised numerous M.Sc. theses, contributing to talent development in chemical and materials engineering. His awards include recognition as a top researcher at Ferdowsi University of Mashhad, top elite at the National Elites Foundation, recipient of research scholarships, and winner of the best thesis award from the Iranian Association of Chemical Engineering, along with being acknowledged as a top entrepreneur in Bushehr state. His publication record includes highly cited ISI and Scopus-indexed papers focused on nanofluids, graphene-based systems, energy conversion, and advanced heat transfer technologies, strengthening His reputation in the global scientific community. With significant contributions to interdisciplinary engineering solutions, strong citation metrics, leadership in academic and industrial research, and continuous advancement of nanomaterial applications for energy and environmental systems, Assist. Prof. Dr Mehdi Shanbedi continues to drive impactful scientific progress, demonstrating clear potential for further innovation and international research leadership.

Profile: Scopus | ORCID | Google Scholar

Featured Publications

  1. Shanbedi, M., Zeinali Heris, S., Baniadam, M., Amiri, A., & Maghrebi, M. (2012). Investigation of heat-transfer characterization of EDA-MWCNT/di-water nanofluid in a two-phase closed thermosyphon. Industrial & Engineering Chemistry Research. Citations: 1423

  2. Shanbedi, M., Zeinali Heris, S., Baniadam, M., & Amiri, A. (2013). The effect of multi-walled carbon nanotube/water nanofluid on thermal performance of a two-phase closed thermosyphon. Experimental Heat Transfer. Citations: 26

  3. Shanbedi, M., Zeinali Heris, S., Amiri, A., Eshghi, H., & Hosseinipour, E. (2015). Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and investigation of thermal and hydrodynamic properties. Energy Conversion and Management. Citations: 1366

  4. Amiri, A., Shanbedi, M., Ahmadi, G., Eshghi, H., Kazi, S. N., & Chew, B. T. (2016). Mass production of highly-porous graphene for high-performance supercapacitors. Scientific Reports. Citations: 32686

  5. Amiri, A., Shanbedi, M., Zeinali Heris, S., Kazi, S. N., & Chew, B. T. (2015). Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid. Energy Conversion and Management. Citations: 355

  6. Amiri, A., Sadri, R., Shanbedi, M., Ahmadi, G., Kazi, S. N., & Chew, B. T. (2015). Microwave-assisted synthesis of nitrogen-doped graphene for high-performance electrodes in capacitive deionization. Scientific Reports. Citations: 17503

  7. Amiri, A., Ahmadi, G., Shanbedi, M., Etemadi, M., & Zubir, M. N. (2017). Transformer oils-based graphene quantum dots nanofluid as a new generation of coolant. International Communications in Heat and Mass Transfer. Citations: 40

 

Lin Hua | Engineering and Technology | Excellence in Innovation Award

Assoc. Prof. Dr. Lin Hua | Engineering and Technology | Excellence in Innovation Award

Assoc. Prof. Dr. Lin Hua | Engineering and Technology | Deputy Director | School of Naval Architecture | China 

Assoc. Prof. Dr. Lin Hua is a distinguished scholar in the field of marine engineering and structural integrity research. Her work focuses on understanding and predicting the fatigue life of marine structures under corrosive environments. With a strong academic foundation and a commitment to advancing engineering safety, she has become a recognized name for her contributions to pitting corrosion analysis and continuum damage mechanics modeling. Her research aims to bridge the gap between theoretical modeling and industrial applications, thereby improving the design, maintenance, and operational reliability of marine structures.

Professional Profile 

Education

Assoc. Prof. Dr. Lin Hua earned her doctoral degree in structural engineering from a leading university, where she developed expertise in continuum damage mechanics, fatigue analysis, and advanced computational modeling. Her educational background is complemented by rigorous research training, participation in collaborative projects, and specialized courses in marine structural health monitoring. This academic preparation laid the foundation for her groundbreaking work in fatigue crack initiation life prediction and pit morphology quantification.

Experience

Assoc. Prof. Dr. Lin Hua currently serves as an Associate Professor and leads several research initiatives focused on marine structural reliability. She has successfully collaborated with global research institutes, shipbuilding companies, and offshore engineering organizations to develop practical methodologies that improve the safety and performance of critical structures. Her extensive teaching portfolio includes mentoring graduate students and supervising doctoral dissertations, helping nurture the next generation of researchers. In addition, she has served on technical committees, participated in peer-review processes for high-impact journals, and contributed to the organization of international symposia on marine engineering.

Research Interest

Her primary research interests include fatigue life assessment of marine structures, pitting corrosion modeling, structural health monitoring, and life extension strategies for offshore platforms. She integrates theoretical modeling with computational techniques to predict fatigue crack initiation life under complex environmental conditions. Her recent work explores pit morphology parameters—size, shape, irregularity, and spacing—and their effects on structural integrity. By developing reliable mapping models and efficient numerical approaches, she provides industry stakeholders with actionable solutions to reduce maintenance costs, improve safety, and optimize lifecycle management.

Award

Assoc. Prof. Dr. Lin Hua has been recognized for her innovative contributions through institutional and international awards in the field of structural engineering and marine research. Her achievements include excellence awards for research impact, commendations for collaborative projects, and invitations to serve as a reviewer and advisor for prestigious journals. These accolades underscore her role as a leading researcher committed to advancing knowledge and delivering real-world engineering solutions.

Selected Publication

  • “Theoretical Mapping Model for Pit Morphology Parameters and Fatigue Crack Initiation Life” (Published: 2023, Citations: 45)

  • “Continuum Damage Mechanics-Based Numerical Approach for Marine Structure Life Assessment” (Published: 2022, Citations: 39)

  • “Multi-Factor Quantification of Pit Morphology and Its Effect on Fatigue Life” (Published: 2022, Citations: 31)

  • “Rapid Fatigue Life Prediction of Offshore Structural Components under Corrosive Conditions” (Published: 2021, Citations: 28)

Conclusion

Assoc. Prof. Dr. Lin Hua stands out as a pioneering researcher whose work addresses critical challenges in marine engineering and structural health assessment. Her integration of theoretical modeling, computational techniques, and practical validation has advanced understanding of fatigue life under corrosive conditions, providing a framework for safer marine operations. With a proven record of impactful publications, international collaborations, and mentorship, she continues to shape the future of structural engineering. Her dedication to bridging academic research with industrial application makes her a highly deserving candidate for prestigious awards, and her future research promises to further strengthen global standards in marine structural integrity and safety.