MUHAMMAD ISHFAQ | Engineering and Technology | Best Researcher Award

MUHAMMAD ISHFAQ | Engineering and Technology | Best Researcher Award

Dr MUHAMMAD ISHFAQ, Lanzhou University of Technology, China

Dr. Muhammad Ishfaq is a dynamic engineer with a strong research foundation and leadership skills. He holds a Ph.D. from Beijing University of Posts and Telecommunications, specializing in millimeter-wave OAM vortex beam generation through transmissive metasurfaces. With experience as an Assistant Professor at The University of Faisalabad, he led academic projects and supervised students. Dr. Ishfaq has expertise in antenna design, signal processing, and wave propagation. His research focuses on advanced wireless communication technologies and antenna performance, contributing to the development of 5G and beyond. He is skilled in simulation tools like ANSYS HFSS, MATLAB, and CST. 📡📚🎓🌐

Publication Profile

Orcid

Academic Qualification

Dr. Muhammad Ishfaq is a distinguished researcher with a PhD in Electrical Engineering from Beijing University of Posts and Telecommunications (2018–2024), where he conducted groundbreaking research on millimeter wave OAM vortex beams generation through transmissive metasurfaces. He holds a Master of Science in Electrical Engineering, specializing in Signal Processing & Wave Propagation, from Linnaeus University, Sweden (2010–2013), and participated in the Erasmus Exchange Program at Université de Technologie de Belfort Montbéliard, France (2011–2012). Dr. Ishfaq completed his Bachelor’s in Electrical and Electronics Engineering at Bahauddin Zakariya University, Multan, Pakistan (2004–2009). ⚡📡🎓

Professional Experience

Dr. Muhammad Ishfaq served as Assistant Professor at The University of Faisalabad from 2013 to 2018. His roles included Project Coordinator, faculty support in research, and member of the Quality Enhancement Committee (QEC). He also served as Alumni Association Coordinator and managed the Antenna Propagation and Measurement & Instrument Lab. As Program Coordinator in the Department of Electrical Engineering, he oversaw curriculum development and accreditation for the BE Electrical program. Additionally, he was the IEEE Sub-Branch Counselor, organizing seminars and CPDs. Dr. Ishfaq supervised various projects, including the Erasmus Schools Project in Sweden and the National Internship Program. 🎓📚🔬

Research and Development

Dr. Muhammad Ishfaq’s PhD dissertation, “Research on Millimeter Wave OAM Vortex Beams Generation Through Transmissive Metasurfaces,” focuses on advancing OAM antenna technology for 6G communication. His work introduces innovative unit cells, transmitarrays, and slot elements for broadband vortex beam generation in the Ka-band. The research achieved significant results with mode purities exceeding 70%, peak gain of 23.8 dBi, and bandwidths up to 43.3%. Additionally, his MS thesis “A Compact Microstrip Patch Antenna for LTE Applications” explores compact, multiband antennas, enhancing bandwidth for miniaturized LTE devices through optimized feeding techniques. 🌐📡📶

Achievements

Dr. Muhammad Ishfaq is an accomplished scholar with notable achievements, including receiving the prestigious “Chinese Government” and “European Erasmus” Scholarships, as well as the Linnaeus University Scholarship 🎓🌍. He has contributed to academic community engagement by organizing events such as the “Alumni Get-Together” at the University of Faisalabad in 2014 🎉. Dr. Ishfaq also led impactful workshops, like the one on “Applications of the ISM Radio Bands” and a seminar on “Engineering Project Management” at the same university 📚. Additionally, he established the “Power Electronics and Electric Machines Labs,” further enhancing research opportunities at the institution ⚡🔧.

Research Focus

Dr. Muhammad Ishfaq’s research focus lies in advanced metasurfaces, polarization conversion, and orbital angular momentum (OAM) technologies. His work emphasizes the development of wideband, dual-band, and multifunctional metasurfaces for polarization conversion, particularly in the Ka-band and terahertz regimes. He explores the creation of OAM vortex beams for communication systems and investigates novel polarization converter designs for linear-to-circular conversions. Additionally, his research includes energy-efficient path planning for multi-UAV environments in 5G networks. With contributions to IEEE journals and other high-impact publications, his work significantly advances modern wireless communication and electromagnetic technologies. 📡🔬📶🌐

 

Publication Top Notes

 

Design and Simulation of Inductive Power Transfer Pad for Electric Vehicle Charging

 

Afful Ekow Kelly | Engineering and Technology | Best Researcher Award

Afful Ekow Kelly | Engineering and Technology | Best Researcher Award

Dr Afful Ekow Kelly, Catholic University of Ghana, Ghana

Based on the provided information, Dr. Afful Ekow Kelly is indeed a strong contender for the Best Researcher Award. Here’s a breakdown of why he might be a suitable candidate:

publication profile

Scopus

Academic and Professional Background

Dr. Afful Ekow Kelly holds a Higher National Diploma in Statistics, a Master’s degree in Information Technology with a focus on data security, and a PhD in mobile money security algorithms. His diverse academic background supports his robust research capabilities. Professionally, he has experience lecturing at All Nation University and conducting research in collaboration with prestigious institutions like Rutgers University, Colorado State University, and The University of Mines and Technology (UMaT). This combination of academic credentials and professional experience provides a solid foundation for his research work.

Research and Innovations

Dr. Kelly’s research addresses critical areas in technology and financial systems. His completed and ongoing projects (9 in total) demonstrate a commitment to advancing knowledge in mobile money banking, security, and technology adoption. His studies have made significant contributions to understanding mobile payment adoption among Gen-Z, enhancing security in mobile money systems, and improving disaster management strategies. These contributions highlight his innovative approach and practical impact.

Notable Publications and Citations

Dr. Kelly has published in reputable journals such as the Journal of Innovation and Entrepreneurship and Journal of Emergency Management and Disaster Communications. His work, including the paper on mobile money service transactions in Ghana, has been cited 10 times, reflecting its influence and recognition in the academic community.

Contributions

Dr. Kelly’s research in mobile money banking offers insights into enhancing marketing strategies and promoting sustainable financial practices. His work on mobile money security contributes to reducing fraud and increasing consumer trust, thereby fostering financial inclusion. Additionally, his studies on disaster management provide actionable strategies for improving disaster risk reduction and resilience.

Research Impact

Dr. Kelly’s research has practical implications, such as improving mobile money security and adoption, and providing insights into disaster management. His work aids in understanding factors affecting mobile money usage and enhancing financial security, which is crucial for promoting financial inclusion and disaster resilience.

Awards and Recognition

Dr. Kelly’s contributions to the field have been recognized through significant publications and citations. His ongoing research projects and collaborations with renowned institutions further highlight his commitment and impact in his area of expertise.

Conclusion

Dr. Afful Ekow Kelly’s academic qualifications, extensive research experience, and impactful contributions to mobile money security and disaster management make him a compelling candidate for the Best Researcher Award. His innovative approach and significant findings align well with the criteria for this prestigious recognition.

publication top notes

The sustainability and contribution of Generation Z influenced by hedonic and utilitarian values to use mobile money services for fee payment

Using a technology acceptance model to determine factors influencing continued usage of mobile money service transactions in Ghana

The contribution of government policy and financial security control in Ghana’s mobile money services