Xinxin Zhao | Engineering and Technology | Best Researcher Award

Xinxin Zhao | Engineering and Technology | Best Researcher Award

Dr Xinxin Zhao, School of Metallurgy, Northeastern University, China

Dr. Xinxin Zhao appears to be a strong candidate for the Best Researcher Award based on the following considerations.

Publication profile

Scopus

Research Focus and Innovations

Dr. Zhao specializes in the comprehensive utilization of metallurgical mineral solid waste and non-traditional aluminum resources. Her innovative approach involves the chlorination-oxygen pressure conversion method to extract valuable elements from low-grade bauxite, which addresses the challenges faced by traditional Bayer process treatments. This novel method not only enhances the exploitation of aluminum resources but also contributes to waste reduction and resource efficiency.

Notable Contributions

Co-Extraction of Aluminum and Silicon: Dr. Zhao’s work on the carbochlorination process of low-grade bauxite, published in Materials (2024), focuses on the extraction kinetics and valuable element recovery. Synergistic Extraction from Fly Ash: In her recent publication in the Journal of Sustainable Metallurgy (2024), she explores the extraction of valuable elements from high-alumina fly ash using carbochlorination, showcasing her contributions to sustainable metallurgy. Review on Chitosan Composites: The review article in Polymer Bulletin (2022) by Zhao and colleagues highlights advances in chitosan and its composites, emphasizing her diverse research interests and impact in material science.

Support and Recognition

Dr. Zhao’s research is supported by major funding bodies, including:

  • National Key Research and Development Program of China
  • National Natural Science Foundation of China
  • Cross-Integration and Collaborative Development Project of Northeastern University
  • Natural Science Foundation Joint Fund of Liaoning Province

Research Output and Impact

Her publications span several high-impact journals and include both original research and reviews, reflecting her active engagement in the academic community. Notably, her work on chitosan membranes and aluminum dross treatment has received considerable citations, indicating its significance and influence.

Summary

Dr. Xinxin Zhao’s innovative methodologies, substantial contributions to resource utilization, and strong support from prestigious funding agencies make her a deserving candidate for the Best Researcher Award. Her research not only advances scientific knowledge but also offers practical solutions for sustainable resource management.

Publication top notes

Co-Extraction of Aluminum and Silicon and Kinetics Analysis in Carbochlorination Process of Low-Grade Bauxite

Synergistic Extraction of Valuable Elements from High-Alumina Fly Ash via Carbochlorination

Review on preparation and adsorption properties of chitosan and chitosan composites

Removal of Fluorine, Chlorine, and Nitrogen from Aluminum Dross by Wet Process

Study on Water Model Experimental of Waste Circuit Board Treatment by Top-Blowing Bath Smelting Method

Research Progress of Chitosan Membranes in Pervaporation SeparationΒ 

 

Yiming Xu | Tech Innovations | Best Researcher Award

Yiming Xu | Tech Innovations | Best Researcher Award

Mr Yiming Xu, Cranfield University, United Kingdom

Yiming Xu is a Ph.D. candidate in Energy at Cranfield University (2020-2024) with a focus on AI for energy flexibility and decarbonisation. He holds an MSc in Advanced Mechanical Engineering from Cranfield University and a BEng in Mechanical Engineering from Nanjing University of Aeronautics and Astronautics. Yiming has contributed to Innovate UK projects, presented at conferences such as ICAE and ISGT, and published papers on energy trading. He has interned at DJI Technology Co., Ltd, and holds patents in finger flexibility devices and mountain-climbing aids. Proficient in Python, C++, and data visualization, he is also an amateur Muay Thai fighter. πŸ§ πŸ”‹πŸ€–πŸ“šπŸ₯Š

Publication profile

Orcid

Education

With a PhD in Energy from Cranfield University (2020-2024) πŸŽ“, He focused on AI for energy flexibility modelling and decarbonisation 🌱, vehicle-to-vehicle energy trading, and EV owner behaviour analysis πŸš—. He presented at ICAE, ISGT, ICPADS, and other seminars 🎀. My MSc in Advanced Mechanical Engineering (2019-2020) included a thesis on peer-to-peer energy trading for EVs ⚑ and courses like CFD and risk engineering πŸ“š. During an AI exchange at Imperial College London (2018), I designed computer vision algorithms for a robotic arm πŸ€–. My BEng from Nanjing University (2015-2019) involved a thesis on 3D printing and courses in mechanics and materials πŸ› οΈ.

Experience

During my internship at DJI Technology Co., Ltd in Shenzhen, China, from June to August 2018, I participated in the global young engineer competition ROBOMASTER, working with a team that included top universities from China and overseas. I served as venue maintenance personnel in the ROBOMASTER machinery group, responsible for debugging mechanical organs and sensors, and maintaining the visual recognition module of the referee system. I inspected and maintained over 50 units of equipment, resolving issues more than 10 times, ensuring the smooth operation of the event. πŸŒπŸ€–πŸ”§πŸ‘¨β€πŸ”§πŸ“·βœ…

Research Projects

As a Research Assistant on three Innovate UK projects, I optimized energy flow management in urban EV charging with Lesla Ltd (Aug 2023 – Jan 2024), designing AI models to schedule charging behavior and forecast energy demand πŸ“ˆπŸ”‹. I established a smart home EV charger system for Entrust Smart Home Ltd (Jan 2021 – Mar 2021), focusing on app design and peer-to-peer energy trading πŸ“±πŸ . Additionally, I worked with SNRG Ltd and Electric Corby CIC (Oct 2020 – Mar 2021) on advanced grid services, analyzing driving behavior data and designing trading algorithms πŸš—πŸ’‘. All projects met quality standards and were successfully delivered βœ….

Research focus

Yiming Xu’s research primarily focuses on vehicle-to-vehicle (V2V) energy trading, particularly through innovative auction models and flexible trading platforms. His work explores sustainable energy solutions, fraud prevention, and efficient market mechanisms in V2V energy exchanges. Xu’s studies integrate advanced technologies like the K-factor approach and double auction systems to enhance energy trading efficiency and security. His research contributions are significant in the fields of smart grids, green computing, and sustainable energy, aiming to develop robust frameworks for future energy systems. πŸŒπŸ”‹πŸš—πŸ’‘πŸ“‰πŸ”’

Publication top notes

Vehicle-to-Vehicle Energy Trading Framework: A Systematic Literature Review

An Anti-fraud Double Auction Model in Vehicle-to-Vehicle Energy Trading with the K-factor Approach

A Vehicle-to-vehicle Energy Trading Platform Using Double Auction With High Flexibility