Geamel Alyami | Engineering and Technology | Best Researcher Award

Dr. Geamel Alyami | Engineering and Technology | Best Researcher Award

Dr. Geamel Alyami | Engineering and Technology | Best Researcher Award | Associate Research Professor | King Abdulaziz City for Science and Technology | Saudi Arabia 

Dr. Geamel Alyami is a distinguished researcher and engineer specializing in Electrical and Communication Engineering, currently serving at the National Center for Communication Systems and Command and Control Technology within the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. He obtained his Doctor of Science in Electrical Engineering from the Florida Institute of Technology in the United States, where he also earned his Master of Science degree. His academic foundation was laid at the University of Central Florida with a Bachelor of Science in Electrical Engineering, followed by a Diploma in Telecommunication from the Telecommunication and Information College in Jeddah. Throughout his career, Dr. Geamel Alyami has cultivated an extensive background in wireless communication systems, Massive MIMO technology, phased array antennas, and machine learning applications in telecommunication research. His research interests focus on 6G technologies, millimeter-wave communication, channel modeling, predictive antenna systems, and high-efficiency signal processing frameworks that aim to transform global communication infrastructures. With a strong commitment to scientific advancement, Dr. Alyami has contributed to several IEEE-indexed and peer-reviewed international journals and conferences, showcasing impactful work in areas such as multiuser separation, spatial channel modeling, and linear precoding for next-generation communication networks. His technical proficiency includes advanced software and programming tools such as MATLAB, Quartus II, PSpice, VHDL, Verilog HDL, and Microwave Studio, which he effectively integrates into his experimental and theoretical research frameworks. Professionally, Dr. Alyami has accumulated rich industrial and academic experience, having worked with Detecon Al Saudia Co. (DETASAD) as a Transmission SDH/TV Technician, gaining hands-on expertise in telecommunication systems installation, testing, and network optimization. His leadership extends beyond research, as he has actively participated in volunteer and academic communities, including IEEE, Phi Kappa Phi Honor Society, and the Center of Excellence for Telecommunication Applications (CETA). Recognized for his academic excellence, he has been featured on the Dean’s List and received honors from professional engineering societies. Dr. Geamel Alyami’s current research integrates machine learning and predictive modeling for smart THz antennas in 6G systems, reflecting his forward-looking vision for the future of telecommunication engineering. With fluency in Arabic and English and a working knowledge of Spanish, he brings a global perspective to collaborative projects. His unwavering dedication to innovation, leadership, and excellence in communication research underscores his continuing contributions to advancing scientific knowledge and promoting sustainable technology growth in the global research community.

Profile:  Scopus | Google Scholar

Featured Publications 

  1. Alyami, G., & Kostanic, I. (2016). On the spatial separation of multiuser channels using 73 GHz statistical channel models. IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). Citations: 12

  2. Alyami, G., Kostanic, I., & Ahmad, W. (2016). Multiuser separation and performance analysis of millimeter wave channels with linear precoding. IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). Citations: 15

  3. Alyami, G., & Kostanic, I. (2016). A low complexity user selection scheme with linear precoding for Massive MIMO systems. IAENG International Journal of Computer Science, 43(3). Citations: 20

  4. Alyami, G., Kostanic, I., & Ahmad, W. (2017). Performance modeling and analysis of millimeter-wave MIMO systems using linear precoding techniques. IEEE Transactions on Wireless Communications. Citations: 25

  5. Alyami, G., & Kostanic, I. (2018). Channel modeling and signal optimization for next-generation millimeter-wave communications. IEEE Access, 6, 12455–12464. Citations: 30

  6. Alyami, G., & Ahmad, W. (2019). Machine learning-assisted beamforming optimization in massive MIMO networks. IEEE Communications Letters, 23(12), 2245–2249. Citations: 35

 

 

Mehdi Shanbedi | Engineering and Technology | Best Researcher Award

Assist. Prof. Dr Mehdi Shanbedi | Engineering and Technology | Best Researcher Award

Assist. Prof. Dr Mehdi Shanbedi | Engineering and Technology | Best Researcher Award | Chemical Engineering Department | Kherad Institute of Higher Education | Iran

Assist. Prof. Dr Mehdi Shanbedi is a distinguished chemical engineering researcher whose work spans advanced nanomaterials, nanofluid engineering, heat and mass transfer, microfluidics, biotechnology, and desalination systems, establishing Him as a leading figure in multidisciplinary materials science and thermal-fluid research. He holds a Ph.D. in Chemical Engineering from Ferdowsi University of Mashhad, where His doctoral research focused on synthesizing nanofluids based on covalently and non-covalently functionalized carbon nanostructures for advanced heat transfer applications. His academic foundation further includes an M.Sc. in Chemical Engineering from the same institution and a B.Sc. from Azad University of Gachsaran, forming a strong technical base for His later scientific contributions. Professionally, Assist. Prof. Dr Mehdi Shanbedi has served as an Assistant Professor at Kherad Institute of Higher Education, contributing extensively to postgraduate education through courses in advanced heat transfer, thermodynamics, fluid mechanics, reactor design, and engineering mathematics. Beyond academia, He co-founded Vira Carbon Nano Materials (VCN Materials) Co. Ltd., spearheading innovations in nanomaterial production and industrial applications. His research interests include the synthesis and functionalization of graphene, MXene, carbon nanotubes, and quantum dots; development of high-performance nanofluids for enhanced heat transfer; desalination engineering; biofluid dynamics; antimicrobial materials; and energy-storage-related advanced materials. His research skills cover experimental and numerical modeling of thermal and hydrodynamic systems, nanostructure fabrication, material characterization, fluid–structure analysis, and biotechnology techniques including microbial studies and biomolecule extraction. Assist. Prof. Dr Mehdi Shanbedi has supervised and co-supervised numerous M.Sc. theses, contributing to talent development in chemical and materials engineering. His awards include recognition as a top researcher at Ferdowsi University of Mashhad, top elite at the National Elites Foundation, recipient of research scholarships, and winner of the best thesis award from the Iranian Association of Chemical Engineering, along with being acknowledged as a top entrepreneur in Bushehr state. His publication record includes highly cited ISI and Scopus-indexed papers focused on nanofluids, graphene-based systems, energy conversion, and advanced heat transfer technologies, strengthening His reputation in the global scientific community. With significant contributions to interdisciplinary engineering solutions, strong citation metrics, leadership in academic and industrial research, and continuous advancement of nanomaterial applications for energy and environmental systems, Assist. Prof. Dr Mehdi Shanbedi continues to drive impactful scientific progress, demonstrating clear potential for further innovation and international research leadership.

Profile: Scopus | ORCID | Google Scholar

Featured Publications

  1. Shanbedi, M., Zeinali Heris, S., Baniadam, M., Amiri, A., & Maghrebi, M. (2012). Investigation of heat-transfer characterization of EDA-MWCNT/di-water nanofluid in a two-phase closed thermosyphon. Industrial & Engineering Chemistry Research. Citations: 1423

  2. Shanbedi, M., Zeinali Heris, S., Baniadam, M., & Amiri, A. (2013). The effect of multi-walled carbon nanotube/water nanofluid on thermal performance of a two-phase closed thermosyphon. Experimental Heat Transfer. Citations: 26

  3. Shanbedi, M., Zeinali Heris, S., Amiri, A., Eshghi, H., & Hosseinipour, E. (2015). Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and investigation of thermal and hydrodynamic properties. Energy Conversion and Management. Citations: 1366

  4. Amiri, A., Shanbedi, M., Ahmadi, G., Eshghi, H., Kazi, S. N., & Chew, B. T. (2016). Mass production of highly-porous graphene for high-performance supercapacitors. Scientific Reports. Citations: 32686

  5. Amiri, A., Shanbedi, M., Zeinali Heris, S., Kazi, S. N., & Chew, B. T. (2015). Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid. Energy Conversion and Management. Citations: 355

  6. Amiri, A., Sadri, R., Shanbedi, M., Ahmadi, G., Kazi, S. N., & Chew, B. T. (2015). Microwave-assisted synthesis of nitrogen-doped graphene for high-performance electrodes in capacitive deionization. Scientific Reports. Citations: 17503

  7. Amiri, A., Ahmadi, G., Shanbedi, M., Etemadi, M., & Zubir, M. N. (2017). Transformer oils-based graphene quantum dots nanofluid as a new generation of coolant. International Communications in Heat and Mass Transfer. Citations: 40

 

Nimai Chand Chandra | Engineering and Technology | Best Researcher Award Professor & Dean | Shri Vishnu Engineering College for Women | India

Prof. Nimai Chand Chandra | Engineering and Technology | Best Researcher Award

Prof. Nimai Chand Chandra | Engineering and Technology | Best Researcher Award | Professor & Dean | Shri Vishnu Engineering College for Women | India 

Prof. Nimai Chand Chandra is a dedicated academician and accomplished researcher recognized for his extensive contributions to engineering education, technological innovation, and applied research across emerging scientific domains. He has established a strong academic foundation through rigorous training and advanced education, enabling him to excel as a faculty leader and multidisciplinary scholar committed to societal advancement through research-driven solutions. His professional experience spans teaching, research guidance, institutional development, and active participation in collaborative projects, reflecting his long-standing commitment to academic excellence and knowledge dissemination. Throughout his career, Prof. Nimai Chand Chandra has engaged deeply in higher education leadership, curriculum development, and student mentorship while contributing to impactful research initiatives that address current global and industrial challenges. His research interests encompass machine learning applications, computational modelling, sustainable engineering solutions, intelligent systems, and data-driven optimization frameworks, all of which highlight his ability to integrate theoretical understanding with real-world applications. He has developed high-level research skills across algorithm development, experimental analysis, data interpretation, and interdisciplinary problem-solving, with strong proficiency in advanced computational tools and analytical techniques that support his innovative academic output. Prof. Nimai Chand Chandra has consistently published in reputable journals and conferences and is noted for his analytical rigor, clarity of research design, and commitment to scientific integrity. He has also contributed to various academic responsibilities, including organizing workshops, contributing to faculty development programs, and guiding student research projects that expand the intellectual environment of the institutions he serves. His awards and honors reflect his achievements in teaching innovation, research productivity, and academic leadership, acknowledging his sustained dedication to the progress of engineering and technology education. His professional strengths include strong teamwork, strategic planning, and the ability to foster collaborative research environments that accelerate knowledge exchange and innovation. As a respected academic, he maintains active involvement in scholarly communities and continues to support transformative research contributions that enhance institutional growth and societal impact. Overall, Prof. Nimai Chand Chandra stands out as a forward-thinking educator and researcher whose persistent efforts, academic achievements, leadership roles, and research excellence collectively demonstrate his valuable impact on the scientific community and reinforce his ongoing potential to contribute meaningfully to progressive research ecosystems at both national and global levels.

Profile: Scopus | ORCID | Google Scholar

Featured Publications 

  1. Chandra, N. C. (2025). Hybrid DRL-Enhanced ACO-WWO for Efficient Resource Allocation and Load-Balancing in Cloud Computing. International Journal of Computational Intelligence Systems.

  2. Chandra, N. C. (2025). A Flawless QoS Aware Task Offloading in IoT Driven Edge Computing System using Chebyshev Based Sand Cat Swarm Optimization. Journal of Grid Computing.

  3. Chandra, N. C. (2024). Decoding Human Facial Emotions: A Ranking Approach using Explainable AI. IEEE Access.

  4. Chandra, N. C. (2024). ProteinCNN-BLSTM: An Efficient Deep Neural Network for Protein Sequence Classification. Computational Intelligence.

  5. Chandra, N. C. (2024). AI-Driven Drowned-Detection System for Rapid Coastal Rescue Operations. Spatial Information Research.

  6. Chandra, N. C. (2024). A Precise Model for Skin Cancer Diagnosis using Hybrid U-Net and Improved MobileNet-V3. Scientific Reports.

  7. Chandra, N. C. (2023). A Novel Approach for Prediction of Gestational Diabetes based on Clinical Signs and Risk Factors. ICST Transactions on Scalable Information Systems.

 

Lingzhi Li | Engineering and Technology | Best Researcher Award

Dr. Lingzhi Li | Engineering and Technology | Best Researcher Award

Dr. Lingzhi Li | Engineering and Technology | Associate Professor | Tongji University | China

Dr. Lingzhi Li is a highly accomplished scholar and professional in the field of civil and structural engineering, currently serving as a professor and doctoral supervisor at Tongji University. With extensive academic and industry experience, he has established himself as an authority in structural safety, concrete materials, and building inspection. His career integrates both academic leadership and practical expertise, contributing to the improvement of resilient infrastructure systems worldwide. Dr. Lingzhi Li is widely recognized for his pioneering contributions to reinforced concrete structures, fire resistance studies, sustainable construction materials, and 3D printing technologies. As a mentor, leader, and researcher, he has made a significant impact in guiding the next generation of engineers while advancing global knowledge in civil engineering.

Professional Profile 

Education

Dr. Lingzhi Li completed his foundational studies in civil and structural engineering at Tongji University, earning both his undergraduate and master’s degrees with distinction. He later pursued advanced academic training at the University of Hong Kong, where he obtained his doctoral degree in civil engineering. His academic journey reflects a strong dedication to excellence, supported by rigorous research, innovation, and applied problem-solving. The combination of domestic and international education provided Dr. Lingzhi Li with a well-rounded perspective, enabling him to approach engineering challenges with both technical depth and global insight. This academic background continues to serve as a foundation for his contributions to research, teaching, and professional practice.

Experience

Dr. Lingzhi Li has accumulated extensive experience in both academia and professional practice. In addition to his role as a professor and Ph.D. supervisor, he has actively contributed to the engineering industry through registered professional certifications and leadership in building quality inspection projects. Earlier in his career, he worked with renowned organizations such as Tongji Architectural Design Institute and AECOM Asia, where he contributed to major structural and geotechnical projects. These experiences enriched his practical expertise and informed his later academic endeavors. Within the university setting, he has taught a wide range of courses, including advanced steel structures, nonlinear analysis of concrete structures, and geotechnics. Dr. Lingzhi Li ability to bridge theoretical research with applied engineering has distinguished him as both an effective educator and a practitioner.

Research Interest

The research interests of Dr. Lingzhi Li cover diverse and impactful areas in civil and structural engineering. His work primarily focuses on the fire resistance of reinforced concrete structures, evaluation and retrofitting of aging infrastructures, and the development of high-performance concrete materials. He has also advanced the use of innovative 3D printing technologies in construction, opening new opportunities for sustainable and efficient building practices. In addition, his studies in seismic resilience and structural damage assessment have provided critical insights into enhancing the safety of buildings under extreme conditions. Dr. Lingzhi Li has led and participated in numerous national and international research projects, collaborating with global institutions to address pressing engineering challenges and to promote sustainable construction practices.

Award

Dr. Lingzhi Li has been honored with prestigious awards in recognition of his scientific and technological contributions. He received the China Industry-University-Research Cooperation Innovation Achievement Award for his innovative work in damage assessment and reinforcement of concrete structures. His role in advancing fire safety of high-performance concrete structures was acknowledged through a provincial-level Scientific and Technological Progress Award. These accolades highlight his ability to translate theoretical research into practical innovations that directly benefit the construction industry. His recognition as an author of highly cited papers further demonstrates the global influence of his scholarship and his standing as a leader in civil engineering research.

Selected Publication

  • “Flexural behavior of precast ultra-lightweight ECC-concrete composite slab with lattice girders” – Published: 2023, Citations: 115

  • “Post-fire reinforced concrete frames: Experimental study on seismic performance” – Published: 2019, Citations: 140

  • “Experimental study on seismic behavior of prefabricated RC frame joints with T-shaped columns” – Published: 2021, Citations: 86

  • “3D recycled mortar printing: System development, process design, material properties and on-site printing” – Published: 2020, Citations: 95

Conclusion

Dr. Lingzhi Li is an outstanding candidate for recognition through this award nomination. His scholarly achievements, extensive research portfolio, and practical contributions to civil and structural engineering demonstrate his unwavering commitment to advancing knowledge and improving global infrastructure resilience. By integrating advanced materials research, innovative construction techniques, and structural safety evaluations, he has created a body of work that addresses both current and future challenges in the built environment. As a professor and mentor, he continues to shape the next generation of engineers while expanding the boundaries of his research. With proven leadership, international collaboration, and award-winning research, Dr. Lingzhi Li exemplifies the qualities of a world-class academic and is highly deserving of this distinguished honor.

 

 

Huifang Niu | Engineering and Technology | Best Researcher Award

Dr. Huifang Niu | Engineering and Technology | Best Researcher Award

lecturer | North University | China

Huifang Niu, born in September 1986, is a Lecturer at North University of China with a strong academic background in automation and intelligent systems. She earned her Bachelor’s degree in Automation and her M.S. in Pattern Recognition and Intelligent Systems from Mongolian University, Hohhot, China, in 2010 and 2013 respectively. In 2023, she completed her Ph.D. in Complex System Modeling and Simulation at North University of China. Her current research focuses on the Remaining Useful Life (RUL) prediction of complex systems, an important area in predictive maintenance and reliability engineering. As an active researcher and educator in electrical engineering, she has published three SCI-indexed journal articles and continues to contribute to the advancement of intelligent system modeling and predictive analytics. Her interdisciplinary expertise bridges automation, simulation, and intelligent diagnostics, positioning her as a promising figure in applied engineering research.

Professional Profile 

Scopus Profile

Education 

Huifang Niu has pursued a progressive academic path in engineering and intelligent systems. She earned her Bachelor’s degree in Automation from Mongolian University, Hohhot, China in July 2010, laying the foundation for her expertise in control systems and automation technologies. She continued at the same institution to obtain her Master’s degree in Pattern Recognition and Intelligent Systems in July 2013, where she delved deeper into machine learning and intelligent algorithms. Most recently, she completed her Ph.D. in Complex System Modeling and Simulation from North University of China, Taiyuan, in June 2023, with a research focus on predictive modeling and the remaining useful life (RUL) of complex systems. Her academic journey reflects a strong.

Professional Experience 

Huifang Niu is currently serving as a Lecturer at North University of China, where she is actively involved in both teaching and research within the field of electrical engineering. Her professional work centers on the prediction of the Remaining Useful Life (RUL) of complex systems, a vital area in the domains of system reliability and intelligent maintenance. With a strong academic foundation and research focus, she contributes to the academic development of undergraduate and postgraduate students while also engaging in scholarly research. Her role bridges theory and application, combining complex system modeling with real-world engineering challenges. Through her work, she continues to expand her expertise in automation, intelligent diagnostics, and predictive system analysis.

Research Interests

Huifang Niu’s research interests lie at the intersection of complex system modeling, intelligent diagnostics, and predictive maintenance. She is particularly focused on the Remaining Useful Life (RUL) prediction of complex systems, which plays a crucial role in improving system reliability, optimizing maintenance strategies, and reducing operational risks in industrial settings. Her work leverages techniques from pattern recognition, machine learning, and simulation modeling to develop accurate and efficient predictive models. Driven by real-world engineering challenges, her research aims to enhance the performance, safety, and longevity of automated and intelligent systems, contributing meaningfully to the fields of electrical engineering, system reliability, and intelligent systems design.

Awards and Honors

As an emerging scholar in the field of intelligent systems and predictive maintenance, Huifang Niu has begun to establish her academic footprint through SCI-indexed publications and her contributions to complex system modeling. While she has not yet been widely recognized with major national or international awards, her recent completion of a Ph.D. in 2023 and her ongoing research work position her as a strong candidate for future honors. Her dedication to high-quality research, teaching excellence, and contributions to the engineering community suggest that further academic and professional recognition is likely as she continues to advance her scholarly career.

Publications Top Noted

Title: Remaining Useful Life Prediction for Multi-Component Systems with Stochastic Correlation Based on Auxiliary Particle Filter

Year: 2025

Conclusion

Hiufang Niu shows promising early-career researcher qualities, especially with a recent Ph.D. and specialized work in predictive modeling for complex systems. Her academic progression, SCI-indexed publications, and focused research direction provide a strong foundation. However, for a highly competitive “Best Researcher Award,” the scope and impact of contributions could be further enhanced.

Khalifa Aliyu Ibrahim | Engineering and Technology | Best Researcher Award

Khalifa Aliyu Ibrahim | Engineering and Technology | Best Researcher Award

Mr Khalifa Aliyu Ibrahim, Cranfield University, United Kingdom

Mr. Kamilu A. Ibrahim is a dedicated researcher and academic with expertise in AI-driven high-frequency power electronics. Currently pursuing a PhD at Cranfield University, he has a strong background in physics, energy, and power systems. His research focuses on sustainable energy solutions, incorporating artificial intelligence and machine learning. With numerous publications in reputable journals and conferences, Mr. Ibrahim has made significant contributions to renewable energy, hydrogen systems, and power electronics. His academic career includes roles as a lecturer and research assistant, demonstrating his passion for knowledge dissemination. Recognized for his excellence, he has received prestigious scholarships and awards.

Publication Profile

Google Scholar

Education

Mr. Kamilu A. Ibrahim is currently pursuing a PhD in AI-driven design of high-frequency power electronics at Cranfield University, where he explores innovative approaches to sustainable energy and power systems. He previously earned a Master of Science in Energy Systems and Thermal Processes from Cranfield University (2020-2021), gaining expertise in energy efficiency, renewable energy, and thermal management. Further advancing his research skills, he completed a Master’s by Research (M.Res.) in Energy and Power (2022-2023), focusing on advanced power systems and their optimization. His academic journey began with a Bachelor of Science in Physics from Kaduna State University (2013-2016), where he built a strong foundation in physical sciences and energy applications. Throughout his education, Mr. Ibrahim has demonstrated a commitment to innovation in power electronics, artificial intelligence, and sustainable energy solutions. His multidisciplinary background equips him with the technical and analytical skills essential for driving advancements in renewable energy and intelligent power systems. 🎓⚡🔋

Experience

Mr. Kamilu A. Ibrahim has a strong background in research, teaching, and project management, with a focus on power systems, renewable energy, and AI applications. Since 2022, he has been working as a Research Assistant at Cranfield University, contributing to cutting-edge studies in AI-driven high-frequency power electronics. Prior to this, he served as a Lecturer at Kaduna State University from 2021 to 2022, where he taught physics and energy-related courses while mentoring students in research projects. From 2020 to 2021, he was a Lecturer at Nuhu Bamalli Polytechnic, Zaria, where he played a key role in curriculum development and academic instruction in energy systems. Throughout his career, Mr. Ibrahim has combined his expertise in energy and artificial intelligence to drive innovation in sustainable energy solutions. His experience spans teaching, publishing research in top-tier journals, and collaborating on interdisciplinary projects, making significant contributions to the advancement of renewable energy technologies.

Awards and Honors

Mr. Kamilu A. Ibrahim has been recognized for his academic excellence and research contributions through several prestigious awards and honors. He received the Petroleum Technology Development Fund Scholarship (2021), a highly competitive award supporting outstanding researchers in energy and power systems. In 2020, he was also honored with the Merit-based Foreign Scholarship, which enabled him to pursue advanced studies in energy systems and AI-driven power electronics. In addition to these distinguished scholarships, Mr. Ibrahim has earned multiple certificates of completion from various specialized training programs, focusing on sustainable energy, artificial intelligence applications in power systems, and cutting-edge advancements in high-frequency electronics. His commitment to continuous learning and innovation has positioned him as a leader in his field, contributing significantly to research in renewable energy, hydrogen storage, and machine learning applications. These achievements underscore his dedication to academic excellence and groundbreaking contributions to the future of energy technologies.

Publication Top Notes

  • 📊 Revolutionizing Power Electronics Design Through Large Language Models: Applications and Future Directions (2024)
  • 🌊 Floating Solar Wireless Power Transfer System for Electric Ships: Design and Laboratory Tests (2025)
  • 🔋 Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies (2023)
  • ☀️ The Effect of Solar Irradiation on Solar Cells (2019)
  • 🌡️ Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling (2023)
  • 🌱 High-Performance Green Hydrogen Generation System (2021)
  • ⚗️ Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status, and Future Potential (2023)
  • 📡 Survey and Assessment of Radiation Levels Associated with Mobile and Wireless Telecommunication Mast in Residential and Office Areas within Kaduna Metropolis (2019)
  • 🚀 Decision Support System for Sustainable Hydrogen Production: Case Study of Saudi Arabia (2025)
  • 🛢️ Measurements of Pour Points, Flash Points, Water Contents, and Viscosity of Some Selected Automobile Oils Used as Lubricants in Nigeria (2022)

Ebrahim Farrokh | Engineering and Technology | Best Researcher Award

Ebrahim Farrokh | Engineering and Technology | Best Researcher Award

Assoc. Prof. Dr Ebrahim Farrokh, Amirkabir University of Technology, Iran

Assoc. Prof. Dr. Ebrahim Farrokh is a distinguished expert in rock mechanics and mining engineering, serving as the Head of Rock Mechanics and Mining Engineering at Amirkabir University of Technology. With a career spanning academia and industry, he specializes in tunnel boring machines (TBMs), underground excavation, and rock stability analysis. He has played a key role in major tunneling projects, providing expertise on TBM operations, rock fragmentation, and ground control. His research has led to numerous influential publications, advancing TBM performance prediction and tunnel design methodologies. Alongside his academic role, he consults for Tunnel Saz Machin Co. and has held managerial positions at Hyundai Engineering and Construction. Recognized with prestigious awards, including the Hardy Memorial Award and SME’s NAT Conference Scholarship, his contributions continue to shape the field of mining engineering. His work combines theoretical advancements with practical applications, ensuring safer and more efficient underground construction projects. 🚆💡

Publication Profile

Google Scholoar

Education

  • Ph.D. in Mining Engineering, Penn State University (2009-2012) 🏗️
    Dr. Farrokh earned his Ph.D. at Penn State University, focusing on TBM performance evaluation, advance rate prediction, and rock behavior analysis. His research contributed to innovative methodologies for assessing TBM cutter wear and ground stability.

  • M.Sc. in Mining Engineering, Tehran University (2001-2004) ⛏️
    During his master’s studies, he specialized in underground excavation, tunnel stability, and mine planning. His thesis examined rock fragmentation techniques and their applications in mechanized tunneling.

  • B.Sc. in Mining Engineering, Yazd University (1997-2001) 🌍
    He completed his undergraduate degree at Yazd University, gaining foundational knowledge in rock mechanics, mineral extraction, and geotechnical engineering. His early research explored TBM operational parameters and ground convergence in tunneling projects.

Experience

  • Associate Professor & Head, Rock Mechanics & Mining Engineering, Amirkabir University of Technology (2018-present) 🎓
    Leads research and academic initiatives in TBMs, tunnel stability, and underground mining.

  • Consultant, Tunnel Saz Machin Co. (2018-present) 🏗️
    Provides technical expertise in TBM operations, ground support, and excavation efficiency.

  • TBM Specialist & Manager, Hyundai Engineering & Construction (2013-2017) 🚜
    Managed TBM operations in major tunneling projects, optimizing performance and reducing downtime.

  • Research Assistant, Penn State University (2009-2012) 📊
    Conducted cutting-edge research on TBM cutter wear, penetration rate estimation, and tunnel convergence.

Awards and Honors 🏆

  • Outstanding Business Performance Award, Hyundai Engineering & Construction (2015) 🌟
    Recognized for leadership in TBM project execution and efficiency improvements.

  • Outstanding Research Award, Hyundai Engineering & Construction (2014, 2015) 🏅
    Awarded for contributions to TBM performance evaluation and geotechnical risk mitigation.

  • NAT Student Conference Scholarship Award, SME (2012) 🎓
    Acknowledged for excellence in mining engineering research and academic achievements.

  • Hardy Memorial Award, Penn State University (2010) 🏆
    Prestigious recognition for outstanding research contributions in mining and rock mechanics.

Research Focus

Dr. Farrokh’s research focuses on Tunnel Boring Machines (TBMs) 🚜, specializing in performance evaluation, advance rate prediction, and cutterhead design optimization. In Rock Mechanics 🏗️, he investigates rock properties, ground convergence, and stability assessment for underground projects. His work in Mining Engineering ⛏️ explores underground mining methods, rock fragmentation, and geotechnical risk analysis. By integrating theoretical advancements with real-world applications, Dr. Farrokh enhances the efficiency and safety of tunneling and mining operations. His research contributes to optimizing excavation processes, reducing operational risks, and advancing sustainable underground construction. 📊🔬

Publications Top Notes

  1. Tunnel Face Pressure Design and Control 📊 (2020)
  2. Concrete Segmental Lining: Procedure of Design, Production, and Erection of Segmental Lining in Mechanized Tunneling 📚 (2006)
  3. Study of Various Models for Estimation of Penetration Rate of Hard Rock TBMs 📊 (2012)
  4. Effect of Adverse Geological Conditions on TBM Operation in Ghomroud Tunnel Conveyance Project 🌎 (2009)
  5. Correlation of Tunnel Convergence with TBM Operational Parameters and Chip Size in the Ghomroud Tunnel, Iran 📊 (2008)
  6. A Discussion on Hard Rock TBM Cutter Wear and Cutterhead Intervention Interval Length Evaluation 💡 (2018)
  7. Evaluation of Ground Convergence and Squeezing Potential in the TBM-Driven Ghomroud Tunnel Project 🌎 (2006)
  8. Study of Utilization Factor and Advance Rate of Hard Rock TBMs 📊 (2013)
  9. A Study of Various Models Used in the Estimation of Advance Rates for Hard Rock TBMs 📊 (2020)
  10. Analysis of Unit Supporting Time and Support Installation Time for Open TBMs 🕒 (2020)

Raja Sanjeev Kumar Nakka | Engineering and Technology | Best Researcher Award

Raja Sanjeev Kumar Nakka | Engineering and Technology | Best Researcher Award

Mr Raja Sanjeev Kumar Nakka, Ragon Institute of MGB, MIT and Harvard, United States

Raja Sanjeev Kumar Nakka is a distinguished computer scientist and researcher specializing in biomedical informatics and infectious disease modeling. 🎓 He holds a Master of Science in Computer Science from Kansas State University (2007) and a Bachelor of Technology in Computer Science Engineering from Acharya Nagarjuna University (2005). 🖥️ With extensive experience in software development, he has contributed to cutting-edge research in HIV/AIDS epidemiology, clinical data management, and computational analysis. 📊 His tenure at the Ragon Institute of MGH, MIT, and Harvard has led to significant advancements in cellular immunology databases. 🔬 As a co-author of multiple high-impact journal articles, he has focused on syphilis and HIV interactions in Sub-Saharan Africa. 🌍 His expertise in software engineering, data science, and medical informatics makes him a strong candidate for the Best Researcher Award. 🏅

Publication Profile

Orcid

Education

Raja Sanjeev Kumar Nakka has an outstanding academic background in computer science. 🎓 He earned his Master of Science in Computer Science from Kansas State University in 2007, where he also worked as a Graduate Teaching Assistant. 📖 His undergraduate studies were completed at Acharya Nagarjuna University, India, where he obtained a Bachelor of Technology in Computer Science Engineering in 2005. 🏛️ He further solidified his expertise by earning professional certifications, including Microsoft Certified Professional Developer and Sun Certified Java Programmer (SCJP). 💻 Additionally, he has completed numerous independent courses on topics such as data science, machine learning, C#, and cybersecurity from prestigious platforms. 📊 His strong foundation in both theoretical and applied computing has enabled him to bridge the gap between software development and biomedical research, making him a leader in computational epidemiology and healthcare informatics. 🏆

Experience

With over a decade of experience in software engineering and biomedical informatics, Raja Sanjeev Kumar Nakka has made significant contributions to healthcare technology. 🏥 Since 2014, he has been a Programmer Analyst at the Ragon Institute of MGH, MIT, and Harvard, leading the development of the Cellular Immunology Database (CIDB). 🧬 His work involves designing secure data systems for HIV/AIDS research, collaborating with scientists, and developing advanced ETL tools for patient data processing. 🌍 Previously, he worked as a Senior Software Engineer at Confluence (Indecomm Global Services), where he contributed to financial software solutions using ASP.NET MVC, cloud storage, and Knockout.js. 💻 His expertise spans software development, database architecture, and computational epidemiology, making him an invaluable asset to both research and technology sectors. 🚀 His earlier role as a Graduate Teaching Assistant at Kansas State University further highlights his commitment to education and mentorship. 🎓

Awards and Honors

Raja Sanjeev Kumar Nakka has received multiple accolades for his contributions to software engineering and biomedical research. 🏆 He was recognized for his exceptional work at the Ragon Institute in advancing clinical informatics for HIV/AIDS studies. 🧬 His research publications on infectious diseases, including syphilis-HIV interactions, have gained international recognition. 🌍 His expertise in integrating software solutions with healthcare informatics has been instrumental in revolutionizing data management in clinical studies. 📊 Additionally, he has received professional certifications from Microsoft and Sun Microsystems, further validating his expertise in computer science. 💻 His nomination for the Best Researcher Award is a testament to his outstanding impact in the fields of computational epidemiology, biomedical informatics, and software development. 🏅 With an impressive career dedicated to innovation and interdisciplinary research, he continues to make groundbreaking contributions to global health and technology. 🚀

Research Focus

Raja Sanjeev Kumar Nakka’s research focuses on the intersection of computational science and biomedical informatics, with a particular emphasis on infectious diseases. 🦠 His expertise lies in developing advanced database systems for clinical and immunological data management, particularly in HIV/AIDS research. 📊 At the Ragon Institute of MGH, MIT, and Harvard, he has played a key role in designing secure and efficient data frameworks for global health studies. 🌍 His recent research investigates the impact of syphilis on HIV acquisition and progression in Sub-Saharan Africa, contributing to epidemiological insights. 📚 Additionally, his work extends to artificial intelligence applications in public health, data visualization, and predictive modeling for disease outbreaks. 🔍 By integrating software engineering with medical research, he is advancing the field of computational epidemiology, making data-driven healthcare solutions more accessible and impactful. 🏆 His interdisciplinary approach is reshaping the future of biomedical data science. 🚀

Publication Top Notes

1️⃣ The Association Between Syphilis Infection and HIV Acquisition and HIV Disease Progression in Sub-Saharan AfricaTropical Medicine and Infectious Disease, 2025
2️⃣ The Impact of Syphilis on HIV Acquisition and Progression in Sub-Saharan AfricaPreprint, 2025
3️⃣ Biological and Social Predictors of HIV-1 RNA Viral Suppression in ART Treated PWLH in Sub-Saharan AfricaTropical Medicine and Infectious Disease, 2025
4️⃣ Factors Associated with Comfort Discussing PrEP with Healthcare Providers among Black Cisgender WomenTropical Medicine and Infectious Disease, 2023
5️⃣ Associations between Awareness of Sexually Transmitted Infections (STIs) and Prevalence of STIs among Sub-Saharan African Men and WomenTropical Medicine and Infectious Disease, 2022

Todor Todorov | Engineering and Technology | Best Researcher Award

Todor Todorov | Engineering and Technology | Best Researcher Award

Todor Todorov, Technical University of Sofia, Bulgaria

Prof. Dr. Todor Todorov 🎓🔬 is a distinguished researcher and professor at the Technical University of Sofia, specializing in Microelectromechanical Systems (MEMS) and Mechanism and Machine Theory. 🏛️ He has served as Head of the Laboratory of MEMS and former Dean of the Faculty of Industrial Technology. His research focuses on electromechanical devices, energy harvesting, and smart materials. ⚙️📡 With a Ph.D. in Mechanism Synthesis and an MSc in Decision Support Systems, he has led multiple national and international projects. 📚🛠️ A prolific author and editorial board member, he significantly contributes to advanced engineering innovations. 🚀💡

Publication Profile

Orcid

Education

Prof. Dr. Todor Todorov 🎓🔧 is an esteemed mechanical engineer and researcher specializing in precision engineering, decision support systems, and microelectromechanical systems. He earned his Ph.D. from the Technical University of Sofia (1992-2001) and an M.Sc. in Decision Support Systems from the University of Sunderland (1993-1994). With a career spanning academia and research, he has held leadership roles, including Deputy Head of the Department of Theory of Mechanisms and Machines and Chairman of the General Assembly of the Faculty of Industrial Technology. 📚🛠️ A prolific editor and reviewer, he contributes to multiple international journals and MDPI publications. ✍️📖

Experience

Prof. Dr. Todor Todorov is a distinguished academic at the Technical University of Sofia 🇧🇬, specializing in Microelectromechanical Systems (MEMS) and Mechanism and Machine Theory ⚙️. Since 2022, he has led the Laboratory of MEMS, previously serving as Dean of the Faculty of Industrial Technology (2019-2022) 🏫. A professor since 2013, he has taught MEMS, Microtechnology, and Machine Theory 📚. His research spans mechanism synthesis, electromechanical devices, and nanoengineering 🔬. Earlier roles include Associate Professor (2002-2013), Head Assistant Professor (1999-2002), and Senior Assistant Professor (1988-1999). Notably, he also served as Mayor of Vladaya (1995-1999) 🏛️.

Research Focus

Prof. Dr. Todor Todorov’s research focuses on vibrational energy harvesting, microcantilever sensors, and shape memory alloy (SMA)-based actuators ⚙️🔬. His work explores self-excited thermomechanical oscillators 🔥 and bistable pumps 💧 using SMAs, enhancing energy efficiency and control in microdevices. He also investigates virus and pathogen detection 🦠 with dual-microcantilever sensors and the influence of Lorentz forces on sensor sensitivity ⚡. His interdisciplinary research integrates mechanical dynamics, thermoelectromechanical systems, and ultralow mass detection 🎯. With applications in energy harvesting, biomedical sensing, and microfluidics, his studies contribute to innovative sensing technologies and efficient actuator designs for advanced engineering solutions 🚀.

Publication Top Notes

Goran Tepić | Engineering and Technology | Innovative Research Award

Goran Tepić | Engineering and Technology | Innovative Research Award

Assist. Prof. Dr Goran Tepić, University of Novi Sad, Faculty of Technical Sciences, Serbia

Assist. Prof. Dr. Goran Tepić 🎓🔬 is a researcher and educator in Industrial Engineering and Engineering Management. He earned his Ph.D. in 2019 from the University of Novi Sad, focusing on risk management in hazardous substances 🚛⚠️. An assistant professor at the Faculty of Technical Sciences, he has published over 20 papers in leading journals 📚. He co-founded Serbia’s dangerous goods cluster and serves as a safety adviser for ADR/RID transport 🚆. His expertise spans risk analysis, logistics security, and environmental protection 🌍. Fluent in Serbian 🇷🇸 and English 🇬🇧, he is dedicated to advancing industrial safety and engineering.

Publication Profile

Orcid

Education

Assist. Prof. Dr. Goran 🎓 is a dedicated scholar in Industrial Engineering and Engineering Management. He earned his Ph.D. (2014-2020) from the Faculty of Technical Sciences, University of Novi Sad, Serbia 🏗️📊. Before that, he completed his Master’s in Engineering Management (2013-2014) 🎯 and his Bachelor’s with Honours in Engineering Management (2010-2013) 🏅 from the same institution. His academic journey reflects a strong commitment to engineering excellence, innovation, and management strategies. With expertise in industrial processes and technical advancements ⚙️📈, he contributes significantly to the field through research, teaching, and leadership in engineering education. 🚀

Experience

Assist. Prof. Dr. Goran 🎓 is a dedicated scholar in Industrial Engineering and Engineering Management. He earned his Ph.D. (2014-2020) from the Faculty of Technical Sciences, University of Novi Sad, Serbia 🏗️📊, after completing his Master’s in Engineering Management (2013-2014) 🎯 and his Bachelor’s with Honours (2010-2013) 🏅 from the same institution. His academic journey showcases a deep commitment to engineering excellence, innovation, and management strategies. With expertise in industrial processes and technical advancements ⚙️📈, he plays a vital role in research, teaching, and leadership, contributing significantly to engineering education and the future of industrial management. 🚀

Recognition & Impact 

Assist. Prof. Dr. Goran is dedicated to tackling critical industrial and environmental challenges, focusing on chemical accidents, hazardous material storage, and industrial risk analysis ⚠️🏭. His research plays a vital role in enhancing safety measures and sustainability in industrial settings 🌍🔬. Through multi-criteria analysis, he provides innovative solutions for risk assessment and decision-making 🧠📊. Additionally, his work promotes environmental awareness and sustainable industrial practices, bridging the gap between industry and ecological responsibility 🌱♻️. His multidisciplinary contributions are shaping a safer and greener future, making a significant impact on industrial safety and environmental protection 🚀🌎.

Research Focus

Assist. Prof. Dr. Goran Tepić’s research focuses on risk assessment, operational safety, and environmental protection in industries dealing with hazardous materials 🚛⚠️. His work explores accidents in storage facilities, risk management in dangerous substances, and tracking hazardous goods via GPS/GSM 📡📊. He also delves into friction stir welding simulations, urban forestry for sustainability, and reducing metal pollution in water 🌿💧. His interdisciplinary approach combines engineering, logistics, and environmental science to enhance industrial safety and sustainability 🔬🌎. His contributions support efficient resource management and risk reduction strategies in metallurgy, transport, and environmental protection 🏭📉.

Publication Top Notes