borjini naceur | Engineering and Technology | Best Researcher Award

borjini naceur | Engineering and Technology | Best Researcher Award

Prof. Dr borjini naceur, enim, Tunisia

Prof. Dr. Mohamed Naceur Borjini is a distinguished physicist with over two decades of academic and research excellence in thermal sciences, fluid dynamics, and energy systems. Currently serving as Professor of Physics at the National School of Engineering (ENIM), Monastir, Tunisia, he has held various academic posts across Tunisia’s leading scientific institutions. With a Hirsch Index of 28 (Scopus), his prolific contributions span advanced modeling in microfluidics, biomass gasification, and radiative heat transfer. An expert in numerical simulations using Comsol, Ansys Fluent, and Aspen Plus, Dr. Borjini bridges theoretical research and applied engineering. He actively serves as a reviewer for prestigious journals such as Energy, Numerical Heat Transfer, and International Journal of Thermal Sciences. His global collaborations, high-impact publications, and commitment to scientific advancement make him a prominent figure in thermal-fluid sciences and a suitable recipient of the Best Researcher Award.

Publication Profile

Scopus

Education

Prof. Dr. Borjini’s academic journey is rooted in rigorous training across Europe and North Africa. He earned his HDR (Habilitation à Diriger des Recherches) in Physics Sciences from the Faculty of Sciences, Tunis, Tunisia, in 2007, signifying his high-level research leadership. In 1998, he received his Doctorate in Engineering Sciences from the Faculty of Sciences, Perpignan, France. Prior to that, he completed a Master’s degree in Thermal Sciences at INSAT Lyon, France, in 1995, demonstrating a strong foundation in heat transfer and energy systems. His academic path began with an Engineering Diploma in Energy Engineering from ENIM, Monastir, Tunisia, in 1994. This diverse and international academic background equipped him with a robust interdisciplinary skill set, allowing him to excel in numerical modeling, fluid mechanics, and thermal system design.

Experience

Prof. Dr. Borjini has served in academia for over 25 years, holding progressively senior roles. Since 2014, he has been a Professor of Physics at the National School of Engineering (ENIM), Monastir. Prior to this, he held faculty positions at the High Institute of Applied Sciences and Technologies of Sousse (ISSATS) from 2009 to 2014, first as an Associate Professor and then as a full Professor. Between 2001 and 2009, he was affiliated with the Faculty of Sciences, Monastir, and the High School of Sciences and Technologies, Tunis. His early academic career began as an Assistant Professor at the Faculty of Sciences, Monastir. Across these institutions, he has led research initiatives, mentored graduate students, and contributed to curriculum development in physics and engineering. His experience spans teaching, research leadership, and collaborative engineering projects in energy systems and fluid dynamics.

Awards and Honors

While explicit awards are not listed in the provided data, Prof. Dr. Borjini’s academic standing is underscored by his H-index of 28 (Scopus), a testament to the sustained citation and impact of his scholarly work. His regular role as a scientific reviewer for renowned international journals such as Applied Mathematical Modelling, Energy, International Journal of Heat and Mass Transfer, and Journal of Electrostatics further signifies the academic community’s recognition of his expertise. The diversity and prestige of these journals suggest a consistent contribution to peer-reviewed literature in thermal and fluid sciences. His extensive publication record and participation in global collaborations mark him as an influential voice in his field, and his HDR qualification is itself a mark of high academic distinction in the French-speaking academic world. These credentials collectively justify his consideration for prestigious recognitions such as the Best Researcher Award.

Research Focus

Prof. Dr. Borjini’s research centers on thermal-fluid sciences, with specialization in the numerical modeling of complex heat and fluid flow systems. His primary areas of interest include microfluidics, where he employs Comsol Multiphysics for 3D simulations; biomass gasification, involving experimental and CFD-based analyses of multi-stage and fluidized bed reactors using Ansys Fluent and Aspen Plus; and radiative heat transfer, focusing on semitransparent media and methods like FVM and FTnFVM. He has also delved into natural convection and nanofluids, particularly in confined 2D/3D systems, and studied the interaction of magnetic fields and radiation in combined convection problems. His exploration of double diffusive convection and electroconvection in dielectric fluids highlights his wide-ranging applications in sustainable energy and process optimization. Through advanced modeling techniques and cross-platform simulations, he addresses critical challenges in energy engineering, making significant contributions to renewable energy and thermal system design.

Publication Top Notes

Double diffusive convection of hybrid nanofluids in porous enclosures: impact

Khalifa Aliyu Ibrahim | Engineering and Technology | Best Researcher Award

Khalifa Aliyu Ibrahim | Engineering and Technology | Best Researcher Award

Mr Khalifa Aliyu Ibrahim, Cranfield University, United Kingdom

Mr. Kamilu A. Ibrahim is a dedicated researcher and academic with expertise in AI-driven high-frequency power electronics. Currently pursuing a PhD at Cranfield University, he has a strong background in physics, energy, and power systems. His research focuses on sustainable energy solutions, incorporating artificial intelligence and machine learning. With numerous publications in reputable journals and conferences, Mr. Ibrahim has made significant contributions to renewable energy, hydrogen systems, and power electronics. His academic career includes roles as a lecturer and research assistant, demonstrating his passion for knowledge dissemination. Recognized for his excellence, he has received prestigious scholarships and awards.

Publication Profile

Google Scholar

Education

Mr. Kamilu A. Ibrahim is currently pursuing a PhD in AI-driven design of high-frequency power electronics at Cranfield University, where he explores innovative approaches to sustainable energy and power systems. He previously earned a Master of Science in Energy Systems and Thermal Processes from Cranfield University (2020-2021), gaining expertise in energy efficiency, renewable energy, and thermal management. Further advancing his research skills, he completed a Master’s by Research (M.Res.) in Energy and Power (2022-2023), focusing on advanced power systems and their optimization. His academic journey began with a Bachelor of Science in Physics from Kaduna State University (2013-2016), where he built a strong foundation in physical sciences and energy applications. Throughout his education, Mr. Ibrahim has demonstrated a commitment to innovation in power electronics, artificial intelligence, and sustainable energy solutions. His multidisciplinary background equips him with the technical and analytical skills essential for driving advancements in renewable energy and intelligent power systems. 🎓⚡🔋

Experience

Mr. Kamilu A. Ibrahim has a strong background in research, teaching, and project management, with a focus on power systems, renewable energy, and AI applications. Since 2022, he has been working as a Research Assistant at Cranfield University, contributing to cutting-edge studies in AI-driven high-frequency power electronics. Prior to this, he served as a Lecturer at Kaduna State University from 2021 to 2022, where he taught physics and energy-related courses while mentoring students in research projects. From 2020 to 2021, he was a Lecturer at Nuhu Bamalli Polytechnic, Zaria, where he played a key role in curriculum development and academic instruction in energy systems. Throughout his career, Mr. Ibrahim has combined his expertise in energy and artificial intelligence to drive innovation in sustainable energy solutions. His experience spans teaching, publishing research in top-tier journals, and collaborating on interdisciplinary projects, making significant contributions to the advancement of renewable energy technologies.

Awards and Honors

Mr. Kamilu A. Ibrahim has been recognized for his academic excellence and research contributions through several prestigious awards and honors. He received the Petroleum Technology Development Fund Scholarship (2021), a highly competitive award supporting outstanding researchers in energy and power systems. In 2020, he was also honored with the Merit-based Foreign Scholarship, which enabled him to pursue advanced studies in energy systems and AI-driven power electronics. In addition to these distinguished scholarships, Mr. Ibrahim has earned multiple certificates of completion from various specialized training programs, focusing on sustainable energy, artificial intelligence applications in power systems, and cutting-edge advancements in high-frequency electronics. His commitment to continuous learning and innovation has positioned him as a leader in his field, contributing significantly to research in renewable energy, hydrogen storage, and machine learning applications. These achievements underscore his dedication to academic excellence and groundbreaking contributions to the future of energy technologies.

Publication Top Notes

  • 📊 Revolutionizing Power Electronics Design Through Large Language Models: Applications and Future Directions (2024)
  • 🌊 Floating Solar Wireless Power Transfer System for Electric Ships: Design and Laboratory Tests (2025)
  • 🔋 Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies (2023)
  • ☀️ The Effect of Solar Irradiation on Solar Cells (2019)
  • 🌡️ Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling (2023)
  • 🌱 High-Performance Green Hydrogen Generation System (2021)
  • ⚗️ Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status, and Future Potential (2023)
  • 📡 Survey and Assessment of Radiation Levels Associated with Mobile and Wireless Telecommunication Mast in Residential and Office Areas within Kaduna Metropolis (2019)
  • 🚀 Decision Support System for Sustainable Hydrogen Production: Case Study of Saudi Arabia (2025)
  • 🛢️ Measurements of Pour Points, Flash Points, Water Contents, and Viscosity of Some Selected Automobile Oils Used as Lubricants in Nigeria (2022)

Marc Muselli | Engineering and Technology | Best Researcher Award

Marc Muselli | Engineering and Technology | Best Researcher Award

Prof Marc Muselli, University of Corsica, France

Prof. Marc Muselli stands out as a strong candidate for the Best Researcher Award. His significant contributions to renewable energy and alternative water production through dew utilization are notable.

Publication profile

google scholar

Introduction

Prof. Marc Muselli is a full professor at the University of Corsica, France, recognized globally for his expertise in renewable energy and water production systems. His research addresses critical environmental challenges, focusing on hydrogen-based energy storage, solar energy electrolysis, and alternative water sources like dew collection under varying climate conditions.

Education

With a rich academic journey at the University of Corsica, Corte, France, this individual earned their Habilitation in September 2007 🎓, demonstrating a high level of expertise in their field. Their doctorate, completed between September 1994 and October 1997 📚, further solidified their research capabilities. Prior to that, they undertook intensive studies from September 1993 to June 1994 📖, laying the groundwork for their distinguished academic career. Their educational path showcases a dedication to scholarly excellence and continuous learning 🌟.

Expertise and Research Impact

Prof. Marc Muselli, a full professor at the University of Corsica, has made substantial contributions to renewable energy systems and alternative water production. His work focuses on solar energy-based electrolysis, hydrogen storage, and dew collection for potable water under diverse climate conditions. His pioneering research in these areas has been globally recognized, reflected in his extensive publication record.

Scientific Leadership

From 2012 to 2020, Muselli served as President of the Scientific Council at the University of Corsica, demonstrating his leadership in driving scientific advancements. He is also an active member of the OPUR International Organization for Dew Utilization.

Awards and Honors

Muselli’s reputation in environmental sciences is reinforced by his ranking among the world’s top 2% of scientists by Stanford University (2021-2023) and his recognition as one of the Best Environmental Scientists by Research.com in 2023.

Additional Contributions

Muselli has contributed significantly to understanding atmospheric phenomena like dew, fog, and rain as water sources, especially in coastal and island regions. His research on radiative cooling and dew yield optimization has advanced alternative water production methods, particularly in arid and semi-arid regions.

Publication top notes

Calculation of the polycrystalline PV module temperature using a simple method of energy balance

Forecasting of preprocessed daily solar radiation time series using neural networks

Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation

Dew water collector for potable water in Ajaccio (Corsica Island, France)

Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation

Forecasting and simulating wind speed in Corsica by using an autoregressive model

Using radiative cooling to condense atmospheric vapor: a study to improve water yield

Measurement and modelling of dew in island, coastal and alpine areas

Dew, fog, and rain as supplementary sources of water in south-western Morocco

Chemical and biological characteristics of dew and rain water in an urban coastal area (Bordeaux, France)

Conclusion

His extensive contributions to environmental science, renewable energy, and alternative water production, along with his global recognition and leadership in research, Prof. Marc Muselli is an exceptional candidate for the Best Researcher Award. His influential research publications, international collaborations, and honors strongly align with the award criteria.

 

JianCheng Gu | Engineering and Technology | Best Researcher Award

JianCheng Gu | Engineering and Technology | Best Researcher Award

Assist Prof Dr JianCheng Gu, Nanjing Tech University, China

Based on Dr. JianCheng Gu’s biography and research contributions, he appears to be a strong candidate for the Best Research Award.

Publication profile

google scholar

Innovative Research

Dr. Gu has developed a novel approach for rapid building damage assessment post-disasters using machine learning and remote sensing. This innovative method addresses a critical need in disaster response and reconstruction, highlighting his ability to push the boundaries of current research.

High-Impact Publications

His work has been published in reputable journals like Composite Structures, Journal of Constructional Steel Research, and Buildings. His research on infrared thermography and shear connectors demonstrates his expertise in structural assessment and repair technologies.

Research Contributions

Dr. Gu’s research on delamination detection, shear resistance, and rapid damage identification has significant practical applications. His studies contribute to improving construction materials and methods, which are crucial for advancing building safety and resilience.

Acknowledged Support

The research is supported by the Japan Society for the Promotion of Science (JSPS), indicating recognition and financial backing from a prestigious institution. This support underscores the relevance and importance of his work in the academic community.

Collaboration and Outreach

Dr. Gu’s collaboration with open-source contributors and his acknowledgment of their efforts reflect his commitment to the broader research community and interdisciplinary work.

Conclusion

Dr. Gu’s innovative approach, impactful publications, significant contributions to structural engineering, and collaboration with the academic community make him a strong candidate for the Best Researcher Award. His work addresses critical issues in disaster management and construction, demonstrating both practical and theoretical advancements in his field.

Publication top notes

Detectability of delamination regions using infrared thermography in concrete members strengthened by CFRP jacketing

Experimental study on the shear resistance of a comb-type perfobond rib shear connector

Image processing methodology for detecting delaminations using infrared thermography in CFRP-jacketed concrete members by infrared thermography

Study of single perfobond rib with head stud shear connectors for a composite structure

Advances in Rapid Damage Identification Methods for Post-Disaster Regional Buildings Based on Remote Sensing Images: A Survey

Calculation method for flexural capacity of composite girders with corrugated steel webs

Effects of corrosion on shear behaviour of discontinuous perfobond rib shear connectors

Experimental study on asynchronous construction for composite bridges with CSWs: Comparative study

Experimental study on flexural behavior of steel-laminated concrete (NC and UHPC) composite beams with corrugated steel webs

Ming-Yen Wei | Engineering and Technology | Best Researcher Award

Ming-Yen Wei | Engineering and Technology | Best Researcher Award

Assist Prof Dr Ming-Yen, Wei National Formosa University, Department of Electrical Engineering, Taiwan

Assist. Prof. Dr. Ming-Yen was born in Taichung City, Taiwan 🇹🇼 on April 20, 1983. He earned his Bachelor’s and Master’s degrees in Electrical Engineering from National Formosa University in 2005 and 2007, and his Ph.D. from National Taiwan University of Science and Technology in 2012 🎓. After a decade in industrial technical roles, he joined National Formosa University as an Assistant Professor in early 2023 👨‍🏫. His research interests include motor drive control, embedded systems, control theory applications, mechatronics, and robotics 🤖⚙️.

Publication profile

Scopus

Research focus

Dr. Ming-Yen Wei’s research primarily focuses on the design, control, and implementation of advanced motion control systems and platforms. His work encompasses the development of servo control systems, multi-axis motion chairs, and flight simulators, utilizing CAN bus and microcontroller technologies. Additionally, he has contributed to the creation of motion-cueing algorithms and inverse kinematics for six degrees of freedom (6DoF) platforms. His research has significant applications in robotics, aerospace, and virtual reality simulations, showcasing innovations in precision motion control and system integration.

Publication top notes

Design and Control of a Three-Axis Motion Servo Control System Based on a CAN Bus

Design and Implementation of a New Training Flight Simulator System

Design and Control of a Multi-Axis Servo Motion Chair System Based on a Microcontroller

Design of a DSP-Based Motion-Cueing Algorithm Using the Kinematic Solution for the 6-DoF Motion Platform

Design and implementation of inverse kinematics and motion monitoring system for 6dof platform

Optimal Control-based Motion Cueing Algorithm Design for 6DOF Motion Platform

Design and Implementation of the Inverse Kinematics and Monitoring Module for Six-axis Crank Arm Platform

Design, Analysis, and Implementation of a Four-DoF Chair Motion Mechanism