Todor Todorov | Engineering and Technology | Best Researcher Award

Todor Todorov | Engineering and Technology | Best Researcher Award

Todor Todorov, Technical University of Sofia, Bulgaria

Prof. Dr. Todor Todorov 🎓🔬 is a distinguished researcher and professor at the Technical University of Sofia, specializing in Microelectromechanical Systems (MEMS) and Mechanism and Machine Theory. 🏛️ He has served as Head of the Laboratory of MEMS and former Dean of the Faculty of Industrial Technology. His research focuses on electromechanical devices, energy harvesting, and smart materials. ⚙️📡 With a Ph.D. in Mechanism Synthesis and an MSc in Decision Support Systems, he has led multiple national and international projects. 📚🛠️ A prolific author and editorial board member, he significantly contributes to advanced engineering innovations. 🚀💡

Publication Profile

Orcid

Education

Prof. Dr. Todor Todorov 🎓🔧 is an esteemed mechanical engineer and researcher specializing in precision engineering, decision support systems, and microelectromechanical systems. He earned his Ph.D. from the Technical University of Sofia (1992-2001) and an M.Sc. in Decision Support Systems from the University of Sunderland (1993-1994). With a career spanning academia and research, he has held leadership roles, including Deputy Head of the Department of Theory of Mechanisms and Machines and Chairman of the General Assembly of the Faculty of Industrial Technology. 📚🛠️ A prolific editor and reviewer, he contributes to multiple international journals and MDPI publications. ✍️📖

Experience

Prof. Dr. Todor Todorov is a distinguished academic at the Technical University of Sofia 🇧🇬, specializing in Microelectromechanical Systems (MEMS) and Mechanism and Machine Theory ⚙️. Since 2022, he has led the Laboratory of MEMS, previously serving as Dean of the Faculty of Industrial Technology (2019-2022) 🏫. A professor since 2013, he has taught MEMS, Microtechnology, and Machine Theory 📚. His research spans mechanism synthesis, electromechanical devices, and nanoengineering 🔬. Earlier roles include Associate Professor (2002-2013), Head Assistant Professor (1999-2002), and Senior Assistant Professor (1988-1999). Notably, he also served as Mayor of Vladaya (1995-1999) 🏛️.

Research Focus

Prof. Dr. Todor Todorov’s research focuses on vibrational energy harvesting, microcantilever sensors, and shape memory alloy (SMA)-based actuators ⚙️🔬. His work explores self-excited thermomechanical oscillators 🔥 and bistable pumps 💧 using SMAs, enhancing energy efficiency and control in microdevices. He also investigates virus and pathogen detection 🦠 with dual-microcantilever sensors and the influence of Lorentz forces on sensor sensitivity ⚡. His interdisciplinary research integrates mechanical dynamics, thermoelectromechanical systems, and ultralow mass detection 🎯. With applications in energy harvesting, biomedical sensing, and microfluidics, his studies contribute to innovative sensing technologies and efficient actuator designs for advanced engineering solutions 🚀.

Publication Top Notes

Ayat-Allah Bouramdane | Engineering and Technology | Best Researcher Award

Ayat-Allah Bouramdane | Engineering and Technology | Best Researcher Award

Assist. Prof. Dr Ayat-Allah, Bouramdane International University of Rabat, Morocco

Assist. Prof. Dr. Ayat-Allah Bouramdane is a passionate academic in renewable energy, currently an Assistant Professor at the International University of Rabat (IUR). He previously led the Modeling Group at GEP-IRESEN-UM6P, establishing impactful research on climate change and energy systems. With a Ph.D. from the Institut Polytechnique de Paris, his work focuses on large-scale solar and wind integration, energy storage, and climate change. Dr. Bouramdane has contributed significantly to publications and international reports on smart cities and energy systems. He’s recognized for his research excellence, earning multiple awards, including Best Researcher in 2023 and 2024. 🌍⚡📚🏆

Publication Profile

Google Scholar

Academic Background

Assist. Prof. Dr. Ayat-Allah Bouramdane holds a Ph.D. from the Institut Polytechnique de Paris (IP Paris), where he researched large-scale solar and wind integration in Morocco, focusing on storage, cost, complementarity, and climate change impacts. He completed his thesis at the Laboratoire de Météorologie Dynamique (LMD) and contributed to the Energy4Climate Interdisciplinary Center (E4C). He earned a Master’s in Energy Environment from École Polytechnique with a GPA of 3.68/4 and a Bachelor’s in Energy Engineering from Université Internationale de Rabat. Dr. Bouramdane also studied at the University of Lorraine and completed his high school with honors. 🌞⚡🌍🎓

Experiences

Assist. Prof. Dr. Ayat-Allah has been serving as an Assistant Professor (Grade A) at the International University of Rabat (IUR) since April 2023, working in the Laboratory of Renewable Energies and Advanced Materials (LERMA) in the College of Engineering and Architecture. Previously, he was a Postdoctoral Researcher and Head of the Modeling Group at the Green Energy Park (GEP), Mohammed VI Polytechnic University, from January to October 2022, where he established the “Climate Change – Energy” group. He also supervised student projects and coordinated research in collaboration with OCP, UM6P, and IRESEN. Earlier, he completed his doctoral studies at l’X – IP Paris. 🌍💡📚

Awards and Recognitions

Assist. Prof. Dr. Ayat-Allah Bouramdane is an accomplished researcher recognized for his contributions to energy systems and sustainability. He contributed to REN21’s Renewables 2024 Global Status Report in both the “Energy Supply” and “Energy Systems & Infrastructure” modules 🌍. He has received multiple accolades, including the Best Researcher Award in 2023 and 2024 🏆. He’s a trusted reviewer with IOP Publishing, and an active member of various organizations such as the Canadian-French Association for the Advancement of Science 🇨🇦 and Women in Green Hydrogen 🌱. Additionally, he serves on multiple editorial boards and scientific committees 📚🔬.

Teaching and Mentorship

Assist. Prof. Dr. Ayat-Allah Bouramdane is a respected academic with a strong track record in teaching and supervising students at prestigious institutions. His dedication to mentoring future engineers and researchers is evident through his active involvement in academic development. Dr. Bouramdane regularly leads technical conferences and workshops, where he plays a crucial role in keeping students updated on the latest challenges and advancements in energy and climate science. His contributions have helped shape the next generation of professionals in these critical fields. 🌱🔋📚🌍💡

Scientific Magazine

Assist. Prof. Dr. Ayat-Allah Bouramdane is a recognized expert in sustainable energy solutions. His works explore various aspects of energy transition, such as the role of critical materials in electric vehicle batteries 🚗🔋, the impact of green hydrogen on Africa’s energy future 🌍💧, and the optimization of hydrogen value chains using digital twins for smart grids ⚡🤖. He has also delved into AI’s role in mitigating climate change effects on agriculture 🌾🌱 and urban water use for sustainable cities 🌆💦. Dr. Bouramdane’s contributions span hydrogen technologies, AI applications, and energy resilience, with a focus on global sustainability and innovation 🌿🌍.

Research Focus

Assist. Prof. Dr. Ayat-Allah Bouramdane’s research focuses on optimizing energy systems, environmental sustainability, and cybersecurity in smart cities. He explores challenges in smart grid cybersecurity, including artificial intelligence for decision-making. His work on water management strategies aims to promote sustainability in urban settings. Additionally, Dr. Bouramdane investigates renewable energy integration, particularly solar and wind power, with a focus on Morocco. He also assesses climate change impacts, analyzing temperature and drought patterns using climate models. His multi-criteria decision-making frameworks are applied to areas like photovoltaic site suitability and offshore wind energy. 🌍💡🔋🌱🔐

Publication Top Notes

Cyberattacks in smart grids: challenges and solving the multi-criteria decision-making for cybersecurity options, including ones that incorporate artificial intelligence, using …

Optimal water management strategies: paving the way for sustainability in smart cities

Assessment of CMIP6 multi-model projections worldwide: which regions are getting warmer and are going through a drought in Africa and Morocco? What changes from CMIP5 to CMIP6?

Scenarios of large-scale solar integration with wind in Morocco: impact of storage, cost, spatio-temporal complementarity and climate change

Adequacy of renewable energy mixes with concentrated solar power and photovoltaic in Morocco: Impact of thermal storage and cost

Identifying large-scale photovoltaic and concentrated solar power hot spots: Multi-criteria decision-making framework

Site suitability of offshore wind energy: A combination of geographic referenced information and analytic hierarchy process

MUHAMMAD ISHFAQ | Engineering and Technology | Best Researcher Award

MUHAMMAD ISHFAQ | Engineering and Technology | Best Researcher Award

Dr MUHAMMAD ISHFAQ, Lanzhou University of Technology, China

Dr. Muhammad Ishfaq is a dynamic engineer with a strong research foundation and leadership skills. He holds a Ph.D. from Beijing University of Posts and Telecommunications, specializing in millimeter-wave OAM vortex beam generation through transmissive metasurfaces. With experience as an Assistant Professor at The University of Faisalabad, he led academic projects and supervised students. Dr. Ishfaq has expertise in antenna design, signal processing, and wave propagation. His research focuses on advanced wireless communication technologies and antenna performance, contributing to the development of 5G and beyond. He is skilled in simulation tools like ANSYS HFSS, MATLAB, and CST. 📡📚🎓🌐

Publication Profile

Orcid

Academic Qualification

Dr. Muhammad Ishfaq is a distinguished researcher with a PhD in Electrical Engineering from Beijing University of Posts and Telecommunications (2018–2024), where he conducted groundbreaking research on millimeter wave OAM vortex beams generation through transmissive metasurfaces. He holds a Master of Science in Electrical Engineering, specializing in Signal Processing & Wave Propagation, from Linnaeus University, Sweden (2010–2013), and participated in the Erasmus Exchange Program at Université de Technologie de Belfort Montbéliard, France (2011–2012). Dr. Ishfaq completed his Bachelor’s in Electrical and Electronics Engineering at Bahauddin Zakariya University, Multan, Pakistan (2004–2009). ⚡📡🎓

Professional Experience

Dr. Muhammad Ishfaq served as Assistant Professor at The University of Faisalabad from 2013 to 2018. His roles included Project Coordinator, faculty support in research, and member of the Quality Enhancement Committee (QEC). He also served as Alumni Association Coordinator and managed the Antenna Propagation and Measurement & Instrument Lab. As Program Coordinator in the Department of Electrical Engineering, he oversaw curriculum development and accreditation for the BE Electrical program. Additionally, he was the IEEE Sub-Branch Counselor, organizing seminars and CPDs. Dr. Ishfaq supervised various projects, including the Erasmus Schools Project in Sweden and the National Internship Program. 🎓📚🔬

Research and Development

Dr. Muhammad Ishfaq’s PhD dissertation, “Research on Millimeter Wave OAM Vortex Beams Generation Through Transmissive Metasurfaces,” focuses on advancing OAM antenna technology for 6G communication. His work introduces innovative unit cells, transmitarrays, and slot elements for broadband vortex beam generation in the Ka-band. The research achieved significant results with mode purities exceeding 70%, peak gain of 23.8 dBi, and bandwidths up to 43.3%. Additionally, his MS thesis “A Compact Microstrip Patch Antenna for LTE Applications” explores compact, multiband antennas, enhancing bandwidth for miniaturized LTE devices through optimized feeding techniques. 🌐📡📶

Achievements

Dr. Muhammad Ishfaq is an accomplished scholar with notable achievements, including receiving the prestigious “Chinese Government” and “European Erasmus” Scholarships, as well as the Linnaeus University Scholarship 🎓🌍. He has contributed to academic community engagement by organizing events such as the “Alumni Get-Together” at the University of Faisalabad in 2014 🎉. Dr. Ishfaq also led impactful workshops, like the one on “Applications of the ISM Radio Bands” and a seminar on “Engineering Project Management” at the same university 📚. Additionally, he established the “Power Electronics and Electric Machines Labs,” further enhancing research opportunities at the institution ⚡🔧.

Research Focus

Dr. Muhammad Ishfaq’s research focus lies in advanced metasurfaces, polarization conversion, and orbital angular momentum (OAM) technologies. His work emphasizes the development of wideband, dual-band, and multifunctional metasurfaces for polarization conversion, particularly in the Ka-band and terahertz regimes. He explores the creation of OAM vortex beams for communication systems and investigates novel polarization converter designs for linear-to-circular conversions. Additionally, his research includes energy-efficient path planning for multi-UAV environments in 5G networks. With contributions to IEEE journals and other high-impact publications, his work significantly advances modern wireless communication and electromagnetic technologies. 📡🔬📶🌐

 

Publication Top Notes

 

Design and Simulation of Inductive Power Transfer Pad for Electric Vehicle Charging

 

Sandeep Jain | Engineering and Technology | Best Researcher Award

Sandeep Jain | Engineering and Technology | Best Researcher Award

Dr Sandeep Jain, Sungkyunkwan University, Republic of Korea, South Korea

Dr. Sandeep Jain is a metallurgical engineer and researcher with expertise in machine learning applications in alloy design, lightweight materials, and high-entropy alloys. He holds a Ph.D. (2023) and M.Tech. (2017) from IIT Indore and a B.E. in Mechanical Engineering (2013). Currently a Postdoctoral Researcher at Sungkyunkwan University, South Korea, Dr. Jain focuses on designing multicomponent alloys and optimizing manufacturing processes. He has published extensively, including works on machine learning-driven phase prediction and flow stress modeling. Dr. Jain is a guest editor, reviewer for leading journals, and recipient of prestigious awards like the Global Best Achievement Award 2024. 🧪🤖🌍

Publication Profile

Orcid

Education

Dr. Sandeep Jain is a dedicated scholar with a robust academic background in engineering. 🎓 He earned his Ph.D. (2017-2023) and M.Tech (2015-2017) in Metallurgical Engineering and Materials Science from the prestigious Indian Institute of Technology Indore, achieving impressive CGPAs of 8.67 and 8.75, respectively. 📘✨ His journey in engineering began with a B.E. in Mechanical Engineering from MBM Engineering College, Jodhpur (2009-2013), where he secured a commendable 68% score. 🔧📚 Dr. Jain’s academic excellence reflects his passion for materials science and mechanical engineering, laying a solid foundation for impactful contributions to his field. 🚀🔬

Research Experience

Dr. Sandeep Jain, currently a Postdoctoral Researcher at Sungkyunkwan University, South Korea 🇰🇷, specializes in designing lightweight multicomponent alloys and optimizing injection molding processes using machine learning 🤖. As a Research Associate at IIT Delhi 🇮🇳, he analyzed the mechanical and creep behavior of Ni-based superalloys and pioneered sustainable rose gold plating methods 🌟. His tenure at IIT Indore included designing lightweight Ni-based alloys and conducting advanced phase equilibria studies 🔬. Dr. Jain’s expertise extends to simulation tools like ANSYS Fluent, XRD, and EBSD, contributing to innovative and sustainable material development 🌍.

Teaching Experience

Dr. Sandeep Jain has an extensive teaching background in materials science and engineering. As a Teaching Assistant at the Indian Institute of Technology Indore (Dec 2017–Nov 2022 and July 2015–June 2017), he contributed to courses like Solidification and Phase Field Modelling, Computational Methods for Materials, and Physical Metallurgy. His expertise also spans practical modules, including Mechanical Workshop, Casting and Welding Lab. Earlier, he served as a Guest Faculty at Govt. Engineering College, Ajmer (Aug 2013–June 2014), teaching Material Science, Engineering Mechanics, Strength of Materials, and more. Dr. Jain’s dedication to education blends technical knowledge with hands-on experience. 🎓🛠️📚

Awards / Fellowships

Dr. Sandeep Jain has earned prestigious accolades for his outstanding achievements in academia and research. In 2024, he was honored with the Global Best Achievement Awards 🎖️🌟, recognizing his contributions to his field. His academic journey has been supported by prestigious fellowships, including the Ph.D. Fellowship 🧑‍🎓📚 and the M.Tech. Fellowship 🎓🔬, both awarded by the Ministry of Human Resource Development (MHRD), Government of India. These honors highlight his dedication, innovation, and excellence in advancing knowledge and contributing to societal progress. Dr. Jain’s achievements continue to inspire and set benchmarks for aspiring scholars worldwide. 🚀📖

Research Focus

Dr. Sandeep Jain’s research focuses on the development and application of machine learning techniques to predict mechanical properties in lightweight alloys and high entropy alloys. His studies include hardness prediction, flow stress, phase prediction, and the influence of processing methods like friction stir processing. These investigations aim to enhance the performance of advanced materials such as Al-Mg-based alloys and CoCrFeNiV high entropy alloys. His work bridges the gap between experimental studies and computational simulations, contributing valuable insights into alloy design and optimization. 🌟🔍📊

Publication Top Notes

A Machine Learning Perspective on Hardness Prediction in Advanced Multicomponent Al-Mg Based Lightweight Alloys

JianCheng Gu | Engineering and Technology | Best Researcher Award

JianCheng Gu | Engineering and Technology | Best Researcher Award

Assist Prof Dr JianCheng Gu, Nanjing Tech University, China

Based on Dr. JianCheng Gu’s biography and research contributions, he appears to be a strong candidate for the Best Research Award.

Publication profile

google scholar

Innovative Research

Dr. Gu has developed a novel approach for rapid building damage assessment post-disasters using machine learning and remote sensing. This innovative method addresses a critical need in disaster response and reconstruction, highlighting his ability to push the boundaries of current research.

High-Impact Publications

His work has been published in reputable journals like Composite Structures, Journal of Constructional Steel Research, and Buildings. His research on infrared thermography and shear connectors demonstrates his expertise in structural assessment and repair technologies.

Research Contributions

Dr. Gu’s research on delamination detection, shear resistance, and rapid damage identification has significant practical applications. His studies contribute to improving construction materials and methods, which are crucial for advancing building safety and resilience.

Acknowledged Support

The research is supported by the Japan Society for the Promotion of Science (JSPS), indicating recognition and financial backing from a prestigious institution. This support underscores the relevance and importance of his work in the academic community.

Collaboration and Outreach

Dr. Gu’s collaboration with open-source contributors and his acknowledgment of their efforts reflect his commitment to the broader research community and interdisciplinary work.

Conclusion

Dr. Gu’s innovative approach, impactful publications, significant contributions to structural engineering, and collaboration with the academic community make him a strong candidate for the Best Researcher Award. His work addresses critical issues in disaster management and construction, demonstrating both practical and theoretical advancements in his field.

Publication top notes

Detectability of delamination regions using infrared thermography in concrete members strengthened by CFRP jacketing

Experimental study on the shear resistance of a comb-type perfobond rib shear connector

Image processing methodology for detecting delaminations using infrared thermography in CFRP-jacketed concrete members by infrared thermography

Study of single perfobond rib with head stud shear connectors for a composite structure

Advances in Rapid Damage Identification Methods for Post-Disaster Regional Buildings Based on Remote Sensing Images: A Survey

Calculation method for flexural capacity of composite girders with corrugated steel webs

Effects of corrosion on shear behaviour of discontinuous perfobond rib shear connectors

Experimental study on asynchronous construction for composite bridges with CSWs: Comparative study

Experimental study on flexural behavior of steel-laminated concrete (NC and UHPC) composite beams with corrugated steel webs

Gioacchino Francesco Andriani | Engineering and Technology | Best Researcher Award

Gioacchino Francesco Andriani | Engineering and Technology | Best Researcher Award

Prof Gioacchino Francesco Andriani, Dipartimento di Scienze della Terra e Geoambientali Università degli Studi di Bari ALDO MORO,a Italy

Based on the provided information, Prof. Gioacchino Francesco Andriani appears to be a highly accomplished researcher with significant contributions in the fields of Engineering Geology, Geomechanics, and the Physico-Mechanical Characterization of Rocks and Soils. Here is an assessment in a title paragraph format, concluding with whether he is a suitable candidate for the Best Researcher Award.

Publication profile

google scholar

Academic and Research Contributions

Prof. Andriani has an extensive academic career as an Associate Professor at the University of Bari Aldo Moro, where he teaches Technical Geology and Rock and Soil Mechanics. His role as the Scientific Director of the Geotechnical Laboratory underscores his leadership in research and education.

Research Impact and Publications

With numerous publications in peer-reviewed journals, Prof. Andriani’s work spans across critical areas such as the stability of rocky coasts, hydraulic properties of calcarenites, and the deterioration and conservation of soft rock. His research has been widely cited, indicating a significant impact in his field.

Editorial and Review Roles

His position as an Associate Editor for Environmental Earth Sciences and his role as a peer reviewer for several international journals highlight his expertise and the recognition of his peers in the scientific community.

International Presence and Collaboration

Prof. Andriani’s active participation in international conferences and his involvement in research projects funded by prestigious bodies like the MIUR and the European Union demonstrate his commitment to advancing geological sciences globally.

Contribution to Cultural Heritage and Geohazards

His research focuses not only on geological studies but also on the conservation and valorization of cultural heritage and areas prone to geohazards. This interdisciplinary approach shows his versatility and the broader societal impact of his work.

Conclusion

Given his academic standing, extensive research output, international recognition, and significant contributions to the field of geology and geo-environmental sciences, Prof. Gioacchino Francesco Andriani is indeed a strong candidate for the Best Researcher Award. His career reflects a commitment to advancing knowledge and addressing real-world challenges through scientific inquiry.

Publication top notes

Physical properties and textural parameters of calcarenitic rocks: qualitative and quantitative evaluations

Rocky coast geomorphology and erosional processes: a case study along the Murgia coastline South of Bari, Apulia—SE Italy

Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone

The effects of wetting and drying, and marine salt crystallization on calcarenite rocks used as building material in historic monuments

Petrophysical and mechanical properties of soft and porous building rocks used in Apulian monuments (south Italy)

Applying rock mass classifications to carbonate rocks for engineering purposes with a new approach using the rock engineering system

An example of the effects of anthropogenic changes on natural environment in the Apulian karst (southern Italy)

Thermal decay of carbonate dimension stones: fabric, physical and mechanical changes

A new methodological approach to assess the stability of discontinuous rocky cliffs using in-situ surveys supported by UAV-based techniques and 3-D finite element model: a case …

On the applicability of geomechanical models for carbonate rock masses interested by karst processes