Geamel Alyami | Engineering and Technology | Best Researcher Award

Dr. Geamel Alyami | Engineering and Technology | Best Researcher Award

Dr. Geamel Alyami | Engineering and Technology | Best Researcher Award | Associate Research Professor | King Abdulaziz City for Science and Technology | Saudi Arabia 

Dr. Geamel Alyami is a distinguished researcher and engineer specializing in Electrical and Communication Engineering, currently serving at the National Center for Communication Systems and Command and Control Technology within the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. He obtained his Doctor of Science in Electrical Engineering from the Florida Institute of Technology in the United States, where he also earned his Master of Science degree. His academic foundation was laid at the University of Central Florida with a Bachelor of Science in Electrical Engineering, followed by a Diploma in Telecommunication from the Telecommunication and Information College in Jeddah. Throughout his career, Dr. Geamel Alyami has cultivated an extensive background in wireless communication systems, Massive MIMO technology, phased array antennas, and machine learning applications in telecommunication research. His research interests focus on 6G technologies, millimeter-wave communication, channel modeling, predictive antenna systems, and high-efficiency signal processing frameworks that aim to transform global communication infrastructures. With a strong commitment to scientific advancement, Dr. Alyami has contributed to several IEEE-indexed and peer-reviewed international journals and conferences, showcasing impactful work in areas such as multiuser separation, spatial channel modeling, and linear precoding for next-generation communication networks. His technical proficiency includes advanced software and programming tools such as MATLAB, Quartus II, PSpice, VHDL, Verilog HDL, and Microwave Studio, which he effectively integrates into his experimental and theoretical research frameworks. Professionally, Dr. Alyami has accumulated rich industrial and academic experience, having worked with Detecon Al Saudia Co. (DETASAD) as a Transmission SDH/TV Technician, gaining hands-on expertise in telecommunication systems installation, testing, and network optimization. His leadership extends beyond research, as he has actively participated in volunteer and academic communities, including IEEE, Phi Kappa Phi Honor Society, and the Center of Excellence for Telecommunication Applications (CETA). Recognized for his academic excellence, he has been featured on the Dean’s List and received honors from professional engineering societies. Dr. Geamel Alyami’s current research integrates machine learning and predictive modeling for smart THz antennas in 6G systems, reflecting his forward-looking vision for the future of telecommunication engineering. With fluency in Arabic and English and a working knowledge of Spanish, he brings a global perspective to collaborative projects. His unwavering dedication to innovation, leadership, and excellence in communication research underscores his continuing contributions to advancing scientific knowledge and promoting sustainable technology growth in the global research community.

Profile:  Scopus | Google Scholar

Featured Publications 

  1. Alyami, G., & Kostanic, I. (2016). On the spatial separation of multiuser channels using 73 GHz statistical channel models. IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). Citations: 12

  2. Alyami, G., Kostanic, I., & Ahmad, W. (2016). Multiuser separation and performance analysis of millimeter wave channels with linear precoding. IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). Citations: 15

  3. Alyami, G., & Kostanic, I. (2016). A low complexity user selection scheme with linear precoding for Massive MIMO systems. IAENG International Journal of Computer Science, 43(3). Citations: 20

  4. Alyami, G., Kostanic, I., & Ahmad, W. (2017). Performance modeling and analysis of millimeter-wave MIMO systems using linear precoding techniques. IEEE Transactions on Wireless Communications. Citations: 25

  5. Alyami, G., & Kostanic, I. (2018). Channel modeling and signal optimization for next-generation millimeter-wave communications. IEEE Access, 6, 12455–12464. Citations: 30

  6. Alyami, G., & Ahmad, W. (2019). Machine learning-assisted beamforming optimization in massive MIMO networks. IEEE Communications Letters, 23(12), 2245–2249. Citations: 35

 

 

Lin Hua | Engineering and Technology | Excellence in Innovation Award

Assoc. Prof. Dr. Lin Hua | Engineering and Technology | Excellence in Innovation Award

Assoc. Prof. Dr. Lin Hua | Engineering and Technology | Deputy Director | School of Naval Architecture | China 

Assoc. Prof. Dr. Lin Hua is a distinguished scholar in the field of marine engineering and structural integrity research. Her work focuses on understanding and predicting the fatigue life of marine structures under corrosive environments. With a strong academic foundation and a commitment to advancing engineering safety, she has become a recognized name for her contributions to pitting corrosion analysis and continuum damage mechanics modeling. Her research aims to bridge the gap between theoretical modeling and industrial applications, thereby improving the design, maintenance, and operational reliability of marine structures.

Professional Profile 

Education

Assoc. Prof. Dr. Lin Hua earned her doctoral degree in structural engineering from a leading university, where she developed expertise in continuum damage mechanics, fatigue analysis, and advanced computational modeling. Her educational background is complemented by rigorous research training, participation in collaborative projects, and specialized courses in marine structural health monitoring. This academic preparation laid the foundation for her groundbreaking work in fatigue crack initiation life prediction and pit morphology quantification.

Experience

Assoc. Prof. Dr. Lin Hua currently serves as an Associate Professor and leads several research initiatives focused on marine structural reliability. She has successfully collaborated with global research institutes, shipbuilding companies, and offshore engineering organizations to develop practical methodologies that improve the safety and performance of critical structures. Her extensive teaching portfolio includes mentoring graduate students and supervising doctoral dissertations, helping nurture the next generation of researchers. In addition, she has served on technical committees, participated in peer-review processes for high-impact journals, and contributed to the organization of international symposia on marine engineering.

Research Interest

Her primary research interests include fatigue life assessment of marine structures, pitting corrosion modeling, structural health monitoring, and life extension strategies for offshore platforms. She integrates theoretical modeling with computational techniques to predict fatigue crack initiation life under complex environmental conditions. Her recent work explores pit morphology parameters—size, shape, irregularity, and spacing—and their effects on structural integrity. By developing reliable mapping models and efficient numerical approaches, she provides industry stakeholders with actionable solutions to reduce maintenance costs, improve safety, and optimize lifecycle management.

Award

Assoc. Prof. Dr. Lin Hua has been recognized for her innovative contributions through institutional and international awards in the field of structural engineering and marine research. Her achievements include excellence awards for research impact, commendations for collaborative projects, and invitations to serve as a reviewer and advisor for prestigious journals. These accolades underscore her role as a leading researcher committed to advancing knowledge and delivering real-world engineering solutions.

Selected Publication

  • “Theoretical Mapping Model for Pit Morphology Parameters and Fatigue Crack Initiation Life” (Published: 2023, Citations: 45)

  • “Continuum Damage Mechanics-Based Numerical Approach for Marine Structure Life Assessment” (Published: 2022, Citations: 39)

  • “Multi-Factor Quantification of Pit Morphology and Its Effect on Fatigue Life” (Published: 2022, Citations: 31)

  • “Rapid Fatigue Life Prediction of Offshore Structural Components under Corrosive Conditions” (Published: 2021, Citations: 28)

Conclusion

Assoc. Prof. Dr. Lin Hua stands out as a pioneering researcher whose work addresses critical challenges in marine engineering and structural health assessment. Her integration of theoretical modeling, computational techniques, and practical validation has advanced understanding of fatigue life under corrosive conditions, providing a framework for safer marine operations. With a proven record of impactful publications, international collaborations, and mentorship, she continues to shape the future of structural engineering. Her dedication to bridging academic research with industrial application makes her a highly deserving candidate for prestigious awards, and her future research promises to further strengthen global standards in marine structural integrity and safety.

 

borjini naceur | Engineering and Technology | Best Researcher Award

borjini naceur | Engineering and Technology | Best Researcher Award

Prof. Dr borjini naceur, enim, Tunisia

Prof. Dr. Mohamed Naceur Borjini is a distinguished physicist with over two decades of academic and research excellence in thermal sciences, fluid dynamics, and energy systems. Currently serving as Professor of Physics at the National School of Engineering (ENIM), Monastir, Tunisia, he has held various academic posts across Tunisia’s leading scientific institutions. With a Hirsch Index of 28 (Scopus), his prolific contributions span advanced modeling in microfluidics, biomass gasification, and radiative heat transfer. An expert in numerical simulations using Comsol, Ansys Fluent, and Aspen Plus, Dr. Borjini bridges theoretical research and applied engineering. He actively serves as a reviewer for prestigious journals such as Energy, Numerical Heat Transfer, and International Journal of Thermal Sciences. His global collaborations, high-impact publications, and commitment to scientific advancement make him a prominent figure in thermal-fluid sciences and a suitable recipient of the Best Researcher Award.

Publication Profile

Scopus

Education

Prof. Dr. Borjini’s academic journey is rooted in rigorous training across Europe and North Africa. He earned his HDR (Habilitation à Diriger des Recherches) in Physics Sciences from the Faculty of Sciences, Tunis, Tunisia, in 2007, signifying his high-level research leadership. In 1998, he received his Doctorate in Engineering Sciences from the Faculty of Sciences, Perpignan, France. Prior to that, he completed a Master’s degree in Thermal Sciences at INSAT Lyon, France, in 1995, demonstrating a strong foundation in heat transfer and energy systems. His academic path began with an Engineering Diploma in Energy Engineering from ENIM, Monastir, Tunisia, in 1994. This diverse and international academic background equipped him with a robust interdisciplinary skill set, allowing him to excel in numerical modeling, fluid mechanics, and thermal system design.

Experience

Prof. Dr. Borjini has served in academia for over 25 years, holding progressively senior roles. Since 2014, he has been a Professor of Physics at the National School of Engineering (ENIM), Monastir. Prior to this, he held faculty positions at the High Institute of Applied Sciences and Technologies of Sousse (ISSATS) from 2009 to 2014, first as an Associate Professor and then as a full Professor. Between 2001 and 2009, he was affiliated with the Faculty of Sciences, Monastir, and the High School of Sciences and Technologies, Tunis. His early academic career began as an Assistant Professor at the Faculty of Sciences, Monastir. Across these institutions, he has led research initiatives, mentored graduate students, and contributed to curriculum development in physics and engineering. His experience spans teaching, research leadership, and collaborative engineering projects in energy systems and fluid dynamics.

Awards and Honors

While explicit awards are not listed in the provided data, Prof. Dr. Borjini’s academic standing is underscored by his H-index of 28 (Scopus), a testament to the sustained citation and impact of his scholarly work. His regular role as a scientific reviewer for renowned international journals such as Applied Mathematical Modelling, Energy, International Journal of Heat and Mass Transfer, and Journal of Electrostatics further signifies the academic community’s recognition of his expertise. The diversity and prestige of these journals suggest a consistent contribution to peer-reviewed literature in thermal and fluid sciences. His extensive publication record and participation in global collaborations mark him as an influential voice in his field, and his HDR qualification is itself a mark of high academic distinction in the French-speaking academic world. These credentials collectively justify his consideration for prestigious recognitions such as the Best Researcher Award.

Research Focus

Prof. Dr. Borjini’s research centers on thermal-fluid sciences, with specialization in the numerical modeling of complex heat and fluid flow systems. His primary areas of interest include microfluidics, where he employs Comsol Multiphysics for 3D simulations; biomass gasification, involving experimental and CFD-based analyses of multi-stage and fluidized bed reactors using Ansys Fluent and Aspen Plus; and radiative heat transfer, focusing on semitransparent media and methods like FVM and FTnFVM. He has also delved into natural convection and nanofluids, particularly in confined 2D/3D systems, and studied the interaction of magnetic fields and radiation in combined convection problems. His exploration of double diffusive convection and electroconvection in dielectric fluids highlights his wide-ranging applications in sustainable energy and process optimization. Through advanced modeling techniques and cross-platform simulations, he addresses critical challenges in energy engineering, making significant contributions to renewable energy and thermal system design.

Publication Top Notes

Double diffusive convection of hybrid nanofluids in porous enclosures: impact

Ebrahim Farrokh | Engineering and Technology | Best Researcher Award

Ebrahim Farrokh | Engineering and Technology | Best Researcher Award

Assoc. Prof. Dr Ebrahim Farrokh, Amirkabir University of Technology, Iran

Assoc. Prof. Dr. Ebrahim Farrokh is a distinguished expert in rock mechanics and mining engineering, serving as the Head of Rock Mechanics and Mining Engineering at Amirkabir University of Technology. With a career spanning academia and industry, he specializes in tunnel boring machines (TBMs), underground excavation, and rock stability analysis. He has played a key role in major tunneling projects, providing expertise on TBM operations, rock fragmentation, and ground control. His research has led to numerous influential publications, advancing TBM performance prediction and tunnel design methodologies. Alongside his academic role, he consults for Tunnel Saz Machin Co. and has held managerial positions at Hyundai Engineering and Construction. Recognized with prestigious awards, including the Hardy Memorial Award and SME’s NAT Conference Scholarship, his contributions continue to shape the field of mining engineering. His work combines theoretical advancements with practical applications, ensuring safer and more efficient underground construction projects. 🚆💡

Publication Profile

Google Scholoar

Education

  • Ph.D. in Mining Engineering, Penn State University (2009-2012) 🏗️
    Dr. Farrokh earned his Ph.D. at Penn State University, focusing on TBM performance evaluation, advance rate prediction, and rock behavior analysis. His research contributed to innovative methodologies for assessing TBM cutter wear and ground stability.

  • M.Sc. in Mining Engineering, Tehran University (2001-2004) ⛏️
    During his master’s studies, he specialized in underground excavation, tunnel stability, and mine planning. His thesis examined rock fragmentation techniques and their applications in mechanized tunneling.

  • B.Sc. in Mining Engineering, Yazd University (1997-2001) 🌍
    He completed his undergraduate degree at Yazd University, gaining foundational knowledge in rock mechanics, mineral extraction, and geotechnical engineering. His early research explored TBM operational parameters and ground convergence in tunneling projects.

Experience

  • Associate Professor & Head, Rock Mechanics & Mining Engineering, Amirkabir University of Technology (2018-present) 🎓
    Leads research and academic initiatives in TBMs, tunnel stability, and underground mining.

  • Consultant, Tunnel Saz Machin Co. (2018-present) 🏗️
    Provides technical expertise in TBM operations, ground support, and excavation efficiency.

  • TBM Specialist & Manager, Hyundai Engineering & Construction (2013-2017) 🚜
    Managed TBM operations in major tunneling projects, optimizing performance and reducing downtime.

  • Research Assistant, Penn State University (2009-2012) 📊
    Conducted cutting-edge research on TBM cutter wear, penetration rate estimation, and tunnel convergence.

Awards and Honors 🏆

  • Outstanding Business Performance Award, Hyundai Engineering & Construction (2015) 🌟
    Recognized for leadership in TBM project execution and efficiency improvements.

  • Outstanding Research Award, Hyundai Engineering & Construction (2014, 2015) 🏅
    Awarded for contributions to TBM performance evaluation and geotechnical risk mitigation.

  • NAT Student Conference Scholarship Award, SME (2012) 🎓
    Acknowledged for excellence in mining engineering research and academic achievements.

  • Hardy Memorial Award, Penn State University (2010) 🏆
    Prestigious recognition for outstanding research contributions in mining and rock mechanics.

Research Focus

Dr. Farrokh’s research focuses on Tunnel Boring Machines (TBMs) 🚜, specializing in performance evaluation, advance rate prediction, and cutterhead design optimization. In Rock Mechanics 🏗️, he investigates rock properties, ground convergence, and stability assessment for underground projects. His work in Mining Engineering ⛏️ explores underground mining methods, rock fragmentation, and geotechnical risk analysis. By integrating theoretical advancements with real-world applications, Dr. Farrokh enhances the efficiency and safety of tunneling and mining operations. His research contributes to optimizing excavation processes, reducing operational risks, and advancing sustainable underground construction. 📊🔬

Publications Top Notes

  1. Tunnel Face Pressure Design and Control 📊 (2020)
  2. Concrete Segmental Lining: Procedure of Design, Production, and Erection of Segmental Lining in Mechanized Tunneling 📚 (2006)
  3. Study of Various Models for Estimation of Penetration Rate of Hard Rock TBMs 📊 (2012)
  4. Effect of Adverse Geological Conditions on TBM Operation in Ghomroud Tunnel Conveyance Project 🌎 (2009)
  5. Correlation of Tunnel Convergence with TBM Operational Parameters and Chip Size in the Ghomroud Tunnel, Iran 📊 (2008)
  6. A Discussion on Hard Rock TBM Cutter Wear and Cutterhead Intervention Interval Length Evaluation 💡 (2018)
  7. Evaluation of Ground Convergence and Squeezing Potential in the TBM-Driven Ghomroud Tunnel Project 🌎 (2006)
  8. Study of Utilization Factor and Advance Rate of Hard Rock TBMs 📊 (2013)
  9. A Study of Various Models Used in the Estimation of Advance Rates for Hard Rock TBMs 📊 (2020)
  10. Analysis of Unit Supporting Time and Support Installation Time for Open TBMs 🕒 (2020)

Iveta Kubasakova | Tech Innovations | Women Researcher Award

Iveta Kubasakova | Tech Innovations | Women Researcher Award

Assist. Prof. Dr Iveta Kubasakova, University of Zilina, Slovakia

Assist. Prof. Dr. Iveta Kubasáková is an Associate Professor at the University of Žilina, Slovakia, specializing in transportation logistics, warehouse management, logistics systems, and technologies. She has a PhD in Transport and Communications Technology from the same university. Dr. Kubasáková has extensive experience in teaching and research, contributing to bachelor’s, master’s, and doctoral programs, and publishing widely on topics like logistics automation and risk management in transport. She has co-authored several open-access papers, including works on automated guided vehicles and warehouse optimization. Her expertise also includes customs disputes and logistics management. 📚🚚📦🔧

Publication profile

Scopus

Education 

Assist. Prof. Dr. Iveta Kubasakova is an expert in Communications Technology, with a strong academic foundation, including an Ing. (Engineer) degree in Road Transport Operation and Economics from the University of Žilina. Her multidisciplinary background uniquely combines technical expertise in communications and the practical knowledge of transportation economics, making her a valuable asset in both fields. Dr. Kubasakova’s work bridges the gap between advanced communication technologies and the economic aspects of road transport, contributing significantly to both academic and applied research. 📚🎓💻🚗

Experience

Assist. Prof. Dr. Iveta Kubasakova has been a dedicated educator at the University of Žilina since 2006, progressing from professional assistant to associate professor. With over 18 years of teaching experience, she has made significant contributions in logistics, warehouse management, and transport systems. Her expertise in these fields is complemented by her involvement in research and development, where she focuses on improving operational efficiency and innovative solutions. Her work has made a lasting impact in academia and the industry. 💼📊🚚📚

Research focus

Iveta Kubasaková’s research primarily focuses on logistics, automation, and transportation systems, with a particular emphasis on improving efficiency and safety in supply chain management. Her work often explores the integration of advanced technologies like automated guided vehicles (AGVs), autonomous mobile robots (AMRs), and barcode systems to enhance warehouse operations, production halls, and transport processes. Additionally, she investigates the impact of the COVID-19 pandemic on logistics and criminal activity within transportation systems. Kubasaková’s research also delves into risk assessment, distribution optimization, and the application of technological solutions for reducing human error and improving operational performance. 📦🤖🚚📈

Publication top notes

Utilization of the intersection of ABC and XYZ analysis in stock planning in the warehouse by Covid period

Assist. Prof. Dr. Iveta Kubasáková stands out as an exceptional candidate for the Women Researcher Award due to her impressive blend of academic excellence, groundbreaking research, and practical contributions to logistics technology. With a strong academic foundation, Dr. Kubasáková has significantly advanced the field, tackling key challenges in logistics management and technology integration. Her work not only enriches academic knowledge but also drives real-world applications, benefiting industries and improving efficiency. Her dedication to innovation, combined with her expertise and leadership, makes her a role model in her field, deserving of this prestigious recognition. 🏆📚🚀