MUHAMMAD ISHFAQ | Engineering and Technology | Best Researcher Award

MUHAMMAD ISHFAQ | Engineering and Technology | Best Researcher Award

Dr MUHAMMAD ISHFAQ, Lanzhou University of Technology, China

Dr. Muhammad Ishfaq is a dynamic engineer with a strong research foundation and leadership skills. He holds a Ph.D. from Beijing University of Posts and Telecommunications, specializing in millimeter-wave OAM vortex beam generation through transmissive metasurfaces. With experience as an Assistant Professor at The University of Faisalabad, he led academic projects and supervised students. Dr. Ishfaq has expertise in antenna design, signal processing, and wave propagation. His research focuses on advanced wireless communication technologies and antenna performance, contributing to the development of 5G and beyond. He is skilled in simulation tools like ANSYS HFSS, MATLAB, and CST. 📡📚🎓🌐

Publication Profile

Orcid

Academic Qualification

Dr. Muhammad Ishfaq is a distinguished researcher with a PhD in Electrical Engineering from Beijing University of Posts and Telecommunications (2018–2024), where he conducted groundbreaking research on millimeter wave OAM vortex beams generation through transmissive metasurfaces. He holds a Master of Science in Electrical Engineering, specializing in Signal Processing & Wave Propagation, from Linnaeus University, Sweden (2010–2013), and participated in the Erasmus Exchange Program at Université de Technologie de Belfort Montbéliard, France (2011–2012). Dr. Ishfaq completed his Bachelor’s in Electrical and Electronics Engineering at Bahauddin Zakariya University, Multan, Pakistan (2004–2009). ⚡📡🎓

Professional Experience

Dr. Muhammad Ishfaq served as Assistant Professor at The University of Faisalabad from 2013 to 2018. His roles included Project Coordinator, faculty support in research, and member of the Quality Enhancement Committee (QEC). He also served as Alumni Association Coordinator and managed the Antenna Propagation and Measurement & Instrument Lab. As Program Coordinator in the Department of Electrical Engineering, he oversaw curriculum development and accreditation for the BE Electrical program. Additionally, he was the IEEE Sub-Branch Counselor, organizing seminars and CPDs. Dr. Ishfaq supervised various projects, including the Erasmus Schools Project in Sweden and the National Internship Program. 🎓📚🔬

Research and Development

Dr. Muhammad Ishfaq’s PhD dissertation, “Research on Millimeter Wave OAM Vortex Beams Generation Through Transmissive Metasurfaces,” focuses on advancing OAM antenna technology for 6G communication. His work introduces innovative unit cells, transmitarrays, and slot elements for broadband vortex beam generation in the Ka-band. The research achieved significant results with mode purities exceeding 70%, peak gain of 23.8 dBi, and bandwidths up to 43.3%. Additionally, his MS thesis “A Compact Microstrip Patch Antenna for LTE Applications” explores compact, multiband antennas, enhancing bandwidth for miniaturized LTE devices through optimized feeding techniques. 🌐📡📶

Achievements

Dr. Muhammad Ishfaq is an accomplished scholar with notable achievements, including receiving the prestigious “Chinese Government” and “European Erasmus” Scholarships, as well as the Linnaeus University Scholarship 🎓🌍. He has contributed to academic community engagement by organizing events such as the “Alumni Get-Together” at the University of Faisalabad in 2014 🎉. Dr. Ishfaq also led impactful workshops, like the one on “Applications of the ISM Radio Bands” and a seminar on “Engineering Project Management” at the same university 📚. Additionally, he established the “Power Electronics and Electric Machines Labs,” further enhancing research opportunities at the institution ⚡🔧.

Research Focus

Dr. Muhammad Ishfaq’s research focus lies in advanced metasurfaces, polarization conversion, and orbital angular momentum (OAM) technologies. His work emphasizes the development of wideband, dual-band, and multifunctional metasurfaces for polarization conversion, particularly in the Ka-band and terahertz regimes. He explores the creation of OAM vortex beams for communication systems and investigates novel polarization converter designs for linear-to-circular conversions. Additionally, his research includes energy-efficient path planning for multi-UAV environments in 5G networks. With contributions to IEEE journals and other high-impact publications, his work significantly advances modern wireless communication and electromagnetic technologies. 📡🔬📶🌐

 

Publication Top Notes

 

Design and Simulation of Inductive Power Transfer Pad for Electric Vehicle Charging

 

Malykhina Galina | Engineering and Technology | Best Researcher Award

Malykhina Galina | Engineering and Technology | Best Researcher Award

Prof. Dr Malykhina Galina, Graduate School of Cyber-Physical Systems Control, Institute of Computer Science and Cybersecurity, Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia

🌐 Prof. Dr. Galina Malykhina is a distinguished Doctor of Engineering Sciences and Professor at the Higher School of Computer Technologies and Information Systems, Peter the Great St. Petersburg Polytechnic University. After earning her degree in Technical Cybernetics, she advanced to research, specializing in radioisotope measurement for oil, UAV automation, and medical devices 🤖💼. She has guided 8 PhD and 1 doctoral thesis, authored 182+ publications, and presented globally 🌍📈. Honored as a distinguished professor, her courses cover computing networks, cybersecurity, and programming, with recent work on neural networks for industry applications 🧠📡.

Publication profile

Orcid

Academic and Professional Background 

Prof. Dr. Galina Fedorovna Malykhina is a distinguished Doctor of Engineering Sciences and Professor at Peter the Great St. Petersburg Polytechnic University (SPbPU). 🌟 With a career beginning as an engineer in Technical Cybernetics, she has advanced to leadership roles in academia and research. Her expertise is backed by a Ph.D. and doctoral degree in Information, Measuring, and Control Systems. 📚🔧 Throughout her career, Prof. Malykhina has contributed significantly to various high-impact areas in engineering, becoming a recognized leader in her field. Her dedication continues to shape the future of engineering education and research. 🏫🔬

Mentorship and Academic Contributions

Prof. Dr. Malykhina has made significant contributions to academia, particularly in mentorship and research. She has supervised numerous research theses, guiding eight candidate dissertations and one doctoral dissertation. Her dedication to shaping future researchers has solidified her role as both an educator and a researcher. Through her mentorship, she fosters academic growth, ensuring that her students are equipped to succeed in their fields. Her influence extends beyond research, nurturing a new generation of scholars who will continue her work and contribute to the academic community. 🧑‍🏫📚🎓👩‍🔬📖

Recognition 

Prof. Dr. Malykhina has an impressive academic record with 182 publications in the Russian Science Citation Index (RSCI), including 73 core publications and 21 indexed in Scopus and Web of Science 📚🌐. Her contributions to research and academia have earned her the prestigious title of “Honored Professor of SPbPU” 🏅, as well as a jubilee medal from SPbPU, recognizing her outstanding impact in her field 🏆. Her work continues to inspire and shape the academic community, reflecting her dedication and excellence in research and education 👩‍🏫✨.

Educational Impact and International Reach 

Dr. Malykhina has made significant contributions to education by teaching a wide range of courses, from Information Security to Digital Image Processing, for both Russian and international students. Her expertise and dedication to advancing knowledge have earned her opportunities to present her research at numerous international and national conferences. These engagements have allowed her to expand the global reach of her work, bridging academic communities worldwide. Dr. Malykhina’s commitment to education and research has not only enriched her students’ learning experiences but has also made valuable contributions to the global scientific dialogue. 🎓🌍💻📊

Research focus

Prof. Dr. Galina Malykhina’s research focus lies at the intersection of signal processing, machine learning, and mathematical modeling. Her work includes developing advanced techniques like wavelet cross-correlation for two-phase flow control systems in oil well production, and applying physics-informed neural networks (PINNs) to solve complex problems in chemical reactor modeling. She has contributed to methods that solve parameterized singular perturbation problems, leveraging physics-based neural network approaches. Her research also explores the integration of analytical modifications with numerical methods for better process modeling in various industrial applications. 📊🔬💻⚙️

Publication top notes

Prof. Dr. Galina Malykhina’s extensive background in engineering, impactful research contributions, role in mentoring emerging researchers, recognized publication record, and global academic engagement establish her as a highly deserving candidate for the Research for Best Researcher Award. Her work demonstrates the qualities of a leading researcher committed to both innovation and education in her field. 

Xiaolan Qiu | Engineering and Technology | Best Researcher Award

Xiaolan Qiu | Engineering and Technology | Best Researcher Award

Prof Xiaolan Qiu, Aerospace Information Research Institute, Chinese Academy of Sciences, China

Based on the information provided, Prof. Xiaolan Qiu appears to be an outstanding candidate for the Best Researcher Award. Here are key reasons for this recommendation, formatted with paragraph headings for clarity:

Publication profile

google scholar

Academic Qualifications

Prof. Qiu holds a Ph.D. in Signal and Information Processing from the Graduate School of the Chinese Academy of Sciences. Her doctoral research focused on advanced imaging algorithms for bistatic Synthetic Aperture Radar (SAR), demonstrating her deep understanding of complex signal processing.

Research Experience

With extensive experience in spaceborne SAR data processing, Prof. Qiu has been involved in significant projects since 2006. She played a critical role in developing data processing systems for China’s first SAR satellite, CRS-1, and has led teams responsible for various SAR satellites, including Gaofen-3. Her current leadership in managing data processors for upcoming SAR satellites underscores her pivotal role in advancing SAR technology.

Publications and Contributions

Prof. Qiu has a robust publication record, contributing to various journals such as IEEE Transactions on Geoscience and Remote Sensing. Her works on bistatic SAR algorithms, SAR image analysis, and polarimetric data processing are highly cited and reflect her contributions to the field of remote sensing. Notable papers include “An improved NLCS algorithm with capability analysis for one-stationary BiSAR” and “Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm.”

Awards and Recognitions

Prof. Qiu has received several prestigious awards, including the Outstanding Scientific and Technological Achievement Award from the Chinese Academy of Sciences in 2016 and the Wang Kuancheng Education Foundation award for Outstanding Woman Scientists in 2010. These honors signify her influence and recognition in the scientific community.

Leadership and Collaboration

As a deputy director of the Key Laboratory of GIPAS at the Institute of Electronics, Chinese Academy of Sciences, Prof. Qiu demonstrates strong leadership in guiding research initiatives and fostering collaboration within the academic and scientific communities. Her role as a project leader for SAR data processing and analysis showcases her ability to manage complex research projects effectively.

Conclusion

Prof. Xiaolan Qiu’s impressive educational background, extensive research experience, high-impact publications, numerous accolades, and leadership in significant research projects make her a highly deserving candidate for the Best Researcher Award. Her contributions not only advance the field of signal and information processing but also enhance the capabilities of SAR technology in various applications.

Publication top notes

An improved NLCS algorithm with capability analysis for one-stationary BiSAR

Some reflections on bistatic SAR of forward-looking configuration

Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm

Synthetic aperture radar three-dimensional imaging——from TomoSAR and array InSAR to microwave vision

Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system

An Omega-K algorithm with phase error compensation for bistatic SAR of a translational invariant case

Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way

SRSDD-v1. 0: A high-resolution SAR rotation ship detection dataset

Projection shape template-based ship target recognition in TerraSAR-X images

A novel motion parameter estimation algorithm of fast moving targets via single-antenna airborne SAR system